QuantShare

Table of contents

1. Quantshare
1.1 Introduction
1.2 Tutorial
1.2.1 Application
1.2.1.1 Using the software
1.2.1.2 Docking windows
1.2.1.3 Toolbars
1.2.1.4 Layouts
1.2.1.5 Templates
1.2.1.6 Workspaces
1.2.1.7 Events
1.2.1.8 Scripting

1.2.2 Charting

1.2.2.1 Charts
1.2.2.2 Drawing tools
1.2.2.3 Auto drawing tools

1.2.3 Symbols

1.2.3.1 Symbols
1.2.3.2 Symbols Selection
1.2.4 Data
1.2.4.1 Databases
1.2.4.2 Application Objects
1.2.5 QuantShare Language
1.2.5.1 QuantShare Language
1.2.5.2 Advanced Rules
1.2.6 Plug-ins
1.2.6.1 Indicators
1.2.6.2 Custom functions
1.2.6.3 Composite
1.2.6.4 Watch list
1.2.6.5 Script Manager
1.2.6.6 Widget Panel
1.2.6.7 Sharing Server
1.2.6.8 Divers
1.2.6.9 Data
1.2.6.9.1 ASCII Importer
1.2.6.9.2 Downloader
1.2.6.9.3 Data Viewer
1.2.6.10 Analysis
1.2.6.10.1 Rules Manager
1.2.6.10.2 Ranking System Manager
1.2.6.10.3 Simulator
1.2.6.10.4 Advanced Money Management
1.2.6.10.5 Screener
1.2.6.11 Artificial Intelligence
1.2.6.11.1 Artificial Intelligence
1.2.6.11.2 Optimizer
1.2.6.12 External
1.2.6.12.1 Portfolio123

1.3 QuantShare Language

1.3.1 Date-Time

1.3.1.1 Year
1.3.1.2 Date
1.3.1.3 DateTicks
1.3.1.4 Day
1.3.1.5 DayOfWeek
1.3.1.6 DayOfYear
1.3.1.7 Hour
1.3.1.8 Interval
1.3.1.9 Minute
1.3.1.10 Month
1.3.1.11 NbDays
1.3.1.12 Now
1.3.1.13 Second
1.3.1.14 TimeTicks
1.3.1.15 Week
1.3.2 Application Info
1.3.2.1 NbGroups
1.3.2.2 NbIndexes
1.3.2.3 NbIndustries
1.3.2.4 NbInGroup
1.3.2.5 NbInIndex
1.3.2.6 NbInIndustry
1.3.2.7 NbInMarket
1.3.2.8 NbInSector
1.3.2.9 NbMarkets
1.3.2.10 NbSectors
1.3.3 Candlestick Pattern
1.3.3.1 Cdl2crows 0
1.3.3.2 Cdl2crows 1
1.3.3.3 Cdl3blackcrows 0
1.3.3.4 Cdl3blackcrows 1
1.3.3.5 Cdl3inside 0
1.3.3.6 Cdl3inside 1
1.3.3.7 CdI3linestrike 0
1.3.3.8 CdI3linestrike 1
1.3.3.9 Cdl3outside 0
1.3.3.10 Cdl3outside 1
1.3.3.11 CdI3staRsinsouth 0
1.3.3.12 Cdl3staRsinsouth 1
1.3.3.13 Cdl3whitesoldiers 0
1.3.3.14 Cdl3whitesoldiers 1
1.3.3.15 CdIAbandonedbaby 0
1.3.3.16 CdIAbandonedbaby 1
1.3.3.17 CdIAdvanceblock 0
1.3.3.27 CdICounterattack 0
1.3.3.28 CdICounterattack 1
1.3.3.29 CdIDarkcloudcover 0
1.3.3.30 CdIDarkcloudcover 1
1.3.3.31 CdIDoji 0
1.3.3.32 CdIDoji 1
1.3.3.33 CdIDojistar 0
1.3.3.34 CdIDojistar 1
1.3.3.35 CdIDragonflydoji 0
1.3.3.36 CdIDragonflydoji 1
1.3.3.37 CdIEngulfing 0
1.3.3.38 CdIEngulfing 1
1.3.3.39 CdIEveningdojistar 0
1.3.3.40 CdIEveningdojistar 1
1.3.3.41 CdIEveningstar 0
1.3.3.42 CdIEveningstar 1
1.3.3.43 CdIGapsidesidewhite 0
1.3.3.44 CdIGapsidesidewhite 1
1.3.3.45 CdIGravestonedoji 0
1.3.3.46 CdIGravestonedoji 1
1.3.3.47 CdlHammer 0
1.3.3.48 CdIHammer 1
1.3.3.49 CdIHangingman 0
1.3.3.50 CdlHangingman 1
1.3.3.51 CdIHarami 0
1.3.3.52 CdIHarami 1
1.3.3.53 CdIHaramicross 0
1.3.3.54 CdIHaramicross 1
1.3.3.55 CdIHighwave 0
1.3.3.56 CdIHighwave 1
1.3.3.57 CdlHikkake 0
1.3.3.58 CdIHikkake 1
1.3.3.59 CdIHikkakemod 0
1.3.3.60 CdlHikkakemod 1
1.3.3.61 CdIHomingpigeon 0
1.3.3.62 CdIHomingpigeon 1
1.3.3.63 CdIIdentical3crows 0
1.3.3.64 CdIIdentical3crows 1
1.3.3.65 CdIInneck 0
1.3.3.66 CdIInneck 1

1.3.3.67 CdIInvertedhammer 0

1.3.3.68 CdIInvertedhammer 1
1.3.3.69 CdIKicking 0
1.3.3.70 CdlKicking 1
1.3.3.71 CdIKickingbylength 0
1.3.3.72 CdlKickingbylength 1
1.3.3.73 CdILadderbottom 0
1.3.3.74 CdILadderbottom 1
1.3.3.75 CdILongleggeddoji 0
1.3.3.76 CdILongleggeddoji 1
1.3.3.77 CdILongline 0
1.3.3.78 CdILongline 1
1.3.3.79 CdIMarubozu 0
1.3.3.80 CdIMarubozu 1
1.3.3.81 CdIMatchinglow 0
1.3.3.82 CdIMatchinglow 1
1.3.3.83 CdIMathold 0
1.3.3.84 CdIMathold 1
1.3.3.85 CdIMorningdojistar 0
1.3.3.86 CdIMorningdojistar 1
1.3.3.87 CdIMorningstar 0
1.3.3.88 CdIMorningstar 1
1.3.3.89 CdIOnneck 0
1.3.3.90 CdIOnneck 1
1.3.3.91 CdIPiercing 0
1.3.3.92 CdIPiercing 1
1.3.3.93 CdIRickshawman 0
1.3.3.94 CdIRickshawman 1
1.3.3.95 CdIRisefall3methods 0
1.3.3.96 CdIRisefall3methods 1
1.3.3.97 CdISeparatinglines 0
1.3.3.98 CdISeparatinglines 1
1.3.3.99 CdIShootingstar 0
1.3.3.100 CdIShootingstar 1
1.3.3.101 CdIShortline 0
1.3.3.102 CdIShortline 1
1.3.3.103 CdISpinningtop 0
1.3.3.104 CdISpinningtop 1
1.3.3.105 CdIStalledpattern 0
1.3.3.106 CdIStalledpattern 1
1.3.3.107 CdISticksandwich 0
1.3.3.108 CdISticksandwich 1
1.3.3.109 CdITakuri 0
1.3.3.110 CdITakuri 1
1.3.3.111 CdITasukigap 0
1.3.3.112 CdITasukigap 1
1.3.3.113 CdIThrusting 0
1.3.3.114 CdIThrusting 1
1.3.3.115 CdITristar 0
1.3.3.116 CdITristar 1
1.3.3.117 CdIUnique3river 0
1.3.3.118 CdIUnique3river 1
1.3.3.119 CdIUpsidegap2crows 0
1.3.3.120 CdIUpsidegap2crows 1
1.3.3.121 CdIXsidegap3methods 0
1.3.3.122 CdIXsidegap3methods 1
1.3.4 Charting
1.3.4.1 Plot
1.3.4.2 Plot1
1.3.4.3 PlotCandleStick
1.3.4.4 PlotCandleStick1
1.3.4.5 PlotFixed
1.3.4.6 PlotSymbol
1.3.4.7 Print
1.3.4.8 PrintChart
1.3.4.9 SetMaxScale
1.3.4.10 SetMinScale
1.3.4.11 SetScale
1.3.4.12 UpdateColor
1.3.5 Columns
1.3.5.1 AddColumn 0
1.3.5.2 AddColumn 1
1.3.6 Database
1.3.6.1 GetData
1.3.6.2 GetDataCount
1.3.6.3 GetDataCountInside
1.3.6.4 GetDataExtern
1.3.6.5 GetDataIndex
1.3.6.6 GetDataIndexDP
1.3.6.7 GetDataInside
1.3.6.8 GetDataStringCount
1.3.6.9 GetDataStringCountInside
1.3.6.10 IsDataExists
1.3.7 Divers
1.3.7.1 Output
1.3.7.2 OutputList
1.3.7.3 States
1.3.7.4 Ticker
1.3.7.5 Ticker1
1.3.8 Indicators
1.3.8.1 Ad 0
1.3.8.2 Ad 1
1.3.8.3 AdOsc 0
1.3.8.4 AdOsc 1
1.3.8.5 Adx 0
1.3.8.6 Adx 1
1.3.8.7 Adxr 0
1.3.8.8 Adxr 1
1.3.8.9 Apo 0
1.3.8.10 Apo 1
1.3.8.11 AroonDown 0
1.3.8.12 AroonDown 1
1.3.8.13 AroonOsc 0
1.3.8.14 AroonOsc 1
1.3.8.15 AroonUp 0
1.3.8.16 AroonUp 1
1.3.8.17 Atr 0
1.3.8.18 Atr 1
1.3.8.19 AvgPrice 0
1.3.8.20 AvgPrice 1
1.3.8.21 BbandSlower 0
1.3.8.22 BbandSlower 1
1.3.8.23 BbandsMiddle 0
1.3.8.24 BbandsMiddle 1
1.3.8.25 BbandsUpper 0
1.3.8.26 BbandsUpper 1
1.3.8.27 Bop 0
1.3.8.28 Bop 1
1.3.8.29 Cci 0
1.3.8.30 Cci 1
1.3.8.31 Cmo 0
1.3.8.32 Cmo 1
1.3.8.33 Correl 0
1.3.8.34 Correl 1
1.3.8.35 Dema 0
1.3.8.36 Dema 1
1.3.8.37 Dx 0
1.3.8.38 Dx 1
1.3.8.39 Ema 0
1.3.8.40 Ema 1
1.3.8.41 Fama 0
1.3.8.42 Fama 1
1.3.8.43 GapDown
1.3.8.44 GapUp
1.3.8.45 Hhv 0
1.3.8.46 Hhv 1
1.3.8.47 Ht_Dcperiod 0
1.3.8.48 Ht_Dcperiod 1
1.3.8.49 Ht_Dcphase 0
1.3.8.50 Ht_Dcphase 1
1.3.8.51 Ht_Leadsine 0
1.3.8.52 Ht_Leadsine 1
1.3.8.53 Ht_Phasorphase 0
1.3.8.54 Ht_Phasorphase 1
1.3.8.55 Ht_Phasorquadrature 0
1.3.8.56 Ht_Phasorquadrature 1
1.3.8.57 Ht_Sine 0
1.3.8.58 Ht_Sine 1
1.3.8.59 Ht_Trendline 0
1.3.8.60 Ht_Trendline 1
1.3.8.61 Ht_Trendmode 0
1.3.8.62 Ht_Trendmode 1
1.3.8.63 Inside
1.3.8.64 Kama 0
1.3.8.65 Kama 1
1.3.8.66 LinearReg 0
1.3.8.67 LinearReg 1
1.3.8.68 LinearReg_Angle 0
1.3.8.69 LinearReg_Angle 1
1.3.8.70 LinearReg_Intercept 0
1.3.8.71 LinearReg_Intercept 1
1.3.8.72 LinearReg_Slope 0
1.3.8.73 LinearReg_Slope 1
1.3.8.74 Llv 0
1.3.8.75 Llv 1
1.3.8.76 Ma 0
1.3.8.77 Ma 1
1.3.8.78 Macd 0
1.3.8.79 Macd 1
1.3.8.80 MacdExt 0
1.3.8.81 MacdExt 1
1.3.8.82 MacdExtHist 0
1.3.8.83 MacdExtHist 1
1.3.8.84 MacdExtSignal 0
1.3.8.85 MacdExtSignal 1
1.3.8.86 MacdHist 0
1.3.8.87 MacdHist 1
1.3.8.88 MacdSignal 0
1.3.8.89 MacdSignal 1
1.3.8.90 Mama 0
1.3.8.91 Mama 1
1.3.8.92 MedPrice 0
1.3.8.93 MedPrice 1
1.3.8.94 Mfi 0
1.3.8.95 Mfi 1
1.3.8.96 MidPoint 0
1.3.8.97 MidPoint 1
1.3.8.98 MidPrice 0
1.3.8.99 MidPrice 1
1.3.8.100 Minus_Di 0
1.3.8.101 Minus_Di 1
1.3.8.102 Minus_Dm 0
1.3.8.103 Minus_Dm 1
1.3.8.104 Mom 0
1.3.8.105 Mom 1
1.3.8.106 Natr 0
1.3.8.108 Obv 0
1.3.8.109 Obv 1
1.3.8.110 Outside
1.3.8.111 Plus_Di 0
1.3.8.112 Plus_Di 1
1.3.8.113 Plus_Dm 0
1.3.8.114 Plus_Dm 1
1.3.8.115 Ppo 0
1.3.8.116 Ppo 1
1.3.8.117 Roc 0
1.3.8.118 Roc 1
1.3.8.119 Rocp 0
1.3.8.120 Rocp 1
1.3.8.121 Rocr 0
1.3.8.122 Rocr 1
1.3.8.123 Rocr100 0
1.3.8.124 Rocr100 1
1.3.8.125 Rsi 0
1.3.8.126 Rsi 1
1.3.8.127 Sar 0
1.3.8.128 Sar 1
1.3.8.129 SarExt 0
1.3.8.130 SarExt 1
1.3.8.131 Sma 0
1.3.8.132 Sma 1
1.3.8.133 Stddev 0
1.3.8.134 Stddev 1
1.3.8.135 StochFastd 0
1.3.8.136 StochFastd 1
1.3.8.137 StochFastk 0
1.3.8.138 StochFastk 1
1.3.8.139 StochRsiFastd 0
1.3.8.140 StochRsiFastd 1
1.3.8.141 StochRsiFastk 0
1.3.8.142 StochRsiFastk 1
1.3.8.143 StochSlowd 0
1.3.8.144 StochSlowd 1
1.3.8.145 StochSlowk 0
1.3.8.146 StochSlowk 1
1.3.8.147 T3 0
1.3.8.148 T3 1
1.3.8.149 Tema 0
1.3.8.150 Tema 1
1.3.8.151 Trange 0
1.3.8.152 Trange 1
1.3.8.153 Trima 0
1.3.8.154 Trima 1
1.3.8.155 Trix 0
1.3.8.156 Trix 1
1.3.8.157 Tsf 0
1.3.8.158 Tsf 1
1.3.8.159 TypPrice 0
1.3.8.160 TypPrice 1
1.3.8.161 UltOsc 0
1.3.8.162 UltOsc 1
1.3.8.163 Var 0
1.3.8.164 Var 1
1.3.8.165 WclPrice 0
1.3.8.166 WclPrice 1
1.3.8.167 Willr 0
1.3.8.168 Willr 1
1.3.8.169 Wma 0
1.3.8.170 Wma 1
1.3.9 Math
1.3.9.1 Abs
1.3.9.2 Atan
1.3.9.3 Avg 0
1.3.9.4 Avg 1
1.3.9.5 Ceil
1.3.9.6 Cos
1.3.9.7 Cosh
1.3.9.8 DivRem
1.3.9.9 Exp
1.3.9.10 Floor
1.3.9.11 Frac
1.3.9.12 leeeRemainder
1.3.9.13 Int
1.3.9.14 Log
1.3.9.15 Log10
1.3.9.16 Max
1.3.9.17 Min
1.3.9.18 Pow
1.3.9.19 Random
1.3.9.20 Round
1.3.9.21 Sharpe
1.3.9.22 Sign
1.3.9.23 Sin
1.3.9.24 Sinh
1.3.9.25 Sqrt
1.3.9.26 Sum 0
1.3.9.27 Sum 1
1.3.9.28 Tan
1.3.9.29 Tanh
1.3.10 Optimal Signal
1.3.10.1 BSignal
1.3.10.2 BSignalLong
1.3.10.3 BSignalShort

1.3.10.4 EntryLongProfit

1.3.10.5 EntryLongProfitCond
1.3.10.6 EntryLongProfitCondExitRule
1.3.10.7 EntryLongProfitExitRule
1.3.10.8 EntryLongProfitPerBar
1.3.10.9 EntryLongProfitPerBarCond
1.3.10.10 EntryLongProfitPerBarCondExitRule
1.3.10.11 EntryLongProfitPerBarExitRule
1.3.10.12 EntryShortProfit
1.3.10.13 EntryShortProfitCond
1.3.10.14 EntryShortProfitCondExitRule
1.3.10.15 EntryShortProfitExitRule
1.3.10.16 EntryShortProfitPerBar
1.3.10.17 EntryShortProfitPerBarCond
1.3.10.18 EntryShortProfitPerBarCondExitRule
1.3.10.19 EntryShortProfitPerBarExitRule

1.3.11 Pre-calculated-value

1.3.11.1 GetPreCalculatedValue 0
1.3.11.2 GetPreCalculatedValue 1

1.3.12 Predictions

1.3.12.1 Predict
1.3.12.2 PredictTicker

1.3.13 Ranking

1.3.13.1 Ranking
1.3.14 Simulator
1.3.14.1 BuyPrice
1.3.14.2 CoverPrice
1.3.14.3 Drawdown
1.3.14.4 Equity
1.3.14.5 Optimize
1.3.14.6 SellPrice
1.3.14.7 SetSimCommission
1.3.14.8 SetSimLongRank
1.3.14.9 SetSimPeriods
1.3.14.10 SetSimRefSymbol
1.3.14.11 SetSimSetting
1.3.14.12 SetSimShortRank
1.3.14.13 SetSimStop
1.3.14.14 SetSimTiming
1.3.14.15 ShortPrice
1.3.15 String
1.3.15.1 GetDataString
1.3.15.2 GetDataStringIndex
1.3.15.3 GetDataStringInside
1.3.15.4 StringContains
1.3.15.5 StringEqual
1.3.15.6 StringExtract
1.3.15.7 StringExtractEnds
1.3.15.8 StringExtractStart
1.3.15.9 StringInsert
1.3.15.10 StringLength
1.3.15.11 StringReplace
1.3.16 Symbol Info
1.3.16.1 Address
1.3.16.2 Country
1.3.16.3 Currency
1.3.16.4 FullName
1.3.16.5 GetPreCalculatedValueString 0
1.3.16.6 GetPreCalculatedValueString 1
1.3.16.7 Group
1.3.16.8 Index
1.3.16.9 Industry
1.3.16.10 Market
1.3.16.11 Name
1.3.16.12 Name1
1.3.16.13 Name2
1.3.16.14 Name3
1.3.16.15 Sector
1.3.16.16 Website
1.3.17 Technical
1.3.17.1 Avglf 0
1.3.17.2 Avglf 1
1.3.17.3 BarsSince
1.3.17.4 Count
1.3.17.5 Cross
1.3.17.6 GFun
1.3.17.7 HhvLb 0
1.3.17.8 HhvLb 1
1.3.17.9 Iff
1.3.17.10 IsFalse
1.3.17.11 IsNa
1.3.17.12 IsNaN
1.3.17.13 IsNoNa
1.3.17.14 IsNoNaN
1.3.17.15 IsNoNull
1.3.17.16 IsNoZero
1.3.17.17 IsNull
1.3.17.18 IsTrue
1.3.17.19 LastNotNulIValue
1.3.17.20 LastValue
1.3.17.21 LlvLb 0
1.3.17.22 LIvLb 1
1.3.17.23 NaNtoLast
1.3.17.24 NaNtoZero
1.3.17.25 Perf
1.3.17.26 PerfD
1.3.17.27 Rank
1.3.17.28 Ref
1.3.17.29 RefZero
1.3.17.30 RemoveSameSignals 0
1.3.17.31 RemoveSameSignals 1
1.3.17.32 RFun
1.3.17.33 Sumlf 0
1.3.17.34 Sumlf 1
1.3.17.35 Value
1.3.17.36 ValueWhen 0
1.3.17.37 ValueWhen 1
1.4 QuantShare CSharp \& JScript.Net
1.4.1 Advanced Money Management
1.4.1.1 OnEndPeriod
1.4.1.2 OnEndSimulation
1.4.1.3 OnStartSimulation
1.4.1.4 OnClosePosition
1.4.1.5 OnNewPosition
1.4.1.6 Members
1.4.1.6.1 MMDivers
1.4.1.6.2 MMOnEndPeriod
1.4.1.6.3 MMOnEndSimulation
1.4.1.6.4 MMOptimize
1.4.1.6.5 MMPortfolio
1.4.1.6.6 MMTradingSystemSettings
1.4.1.6.7 MMVariables
1.4.1.6.8 MMOnNewPosition
1.4.1.6.9 MMExitPosition
1.4.1.6.10 MMNewPosition
1.4.1.6.11 MMOnClosePosition
1.4.1.6.12 MMPosition
1.4.1.6.13 TimeSeries
1.4.1.6.14 VectorCustom
1.4.1.6.15 CustomDatabaseValues
1.4.1.6.16 MMData
1.4.1.6.17 MMOrders
1.4.1.6.18 MMOnStartSimulation
1.4.1.6.19 MMParser
1.4.1.6.20 MMEntrySignals
1.4.1.6.21 MMExitSignals
1.4.1.6.22 _TradingOrder
1.4.2 Analyze Ranking System Metrics
1.4.2.1 Analyze Ranking System Metrics
1.4.2.2 Members
1.4.2.2.1 BucketDetails
1.4.2.2.2 BucketDetailsDate
1.4.2.2.3 RankingSystemPerformanceDetails
1.4.3 Analyze Rules Metrics
1.4.3.1 Analyze Rules Metrics
1.4.3.2 Members
1.4.3.2.1 PositionDetails
1.4.3.2.2 SymbolPositionDetails
1.4.3.2.3 RulesFunctions
1.4.4 Parser Post-Script
1.4.4.1 Downloader Post-Script
1.4.4.2 Members
1.4.4.2.1 PostScript
1.4.4.2.2 PostScriptRow
1.4.5 Parser Pre-Script
1.4.5.1 Downloader Pre-Script
1.4.5.2 Members
1.4.5.2.1 PreScript
1.4.5.2.2 PreScriptRow
1.4.6 Downloader URL-Script
1.4.6.1 Downloader URL-Script
1.4.6.2 Members
1.4.6.2.1 Net
1.4.6.2.2 URLScriptFunctions
1.4.6.2.3 HTMLElement
1.4.6.2.4 URLPath
1.4.7 Indicators
1.4.7.1 Indicators
1.4.7.2 Members
1.4.7.2.1 CFunctions
1.4.7.2.2 CustomDatabaseValues
1.4.7.2.3 QSFormula
1.4.7.2.4 VectorCustom
1.4.7.2.5 VectorD
1.4.7.2.6 VectorDate
1.4.7.2.7 VectorS
1.4.8 Perdiction Model Metrics
1.4.8.1 Perdiction Model Metrics
1.4.8.2 Members
1.4.8.2.1 PredictionErrors
1.4.9 Simulation Metrics
1.4.9.1 Simulation Metrics

1. Quantshare
QUANTSHARE Trading software \oplus Sharing server \oplus Social network

QuantShare is an advanced technical/fundamental analysis program.
QuantShare is a combination of trading software, sharing server and social network website.
We have built a flexible trading software whose possibilities are only limited by your imagination. But because we know that this is not enough, we have created a sharing server to let you exchange items with other traders in order to feed your imagination, increase your productivity, give you the opportunity to use advanced traders tools, and help you improve your trading skills.

QuantShare

1.1 Introduction

DUANTSARE Trading software \oplus Sharing server \oplus Social network

QuantShare is an advanced technical/fundamental analysis program.
QuantShare is a combination of trading software, sharing server and social network website.
We have built a flexible trading software whose possibilities are only limited by your imagination. But because we know that this is not enough, we have created a sharing server to let you exchange items with other traders in order to feed your imagination, increase your productivity, give you the opportunity to use advanced traders tools, and help you improve your trading skills.

QuantShare

1.2 Tutorial

DUANTSMARE Trading software \oplus Sharing server \oplus Social network

This chapter will guide you through the tutorial parts:

Application:

Using the software
Docking windows
Toolbars
Layouts
Templates
Workspaces
Events

Charting:

Charts
Drawing tools
Auto drawing tools

Symbols:

Symbols
Symbols Selection

Data:

Databases
Application Objects

QuantShare Language:

QuantShare Language
FollowedBy

Plug-ins:

Indicators
Custom functions
Composite
Watch List
Script Manager
Widget Panel
Sharing Server
Divers
Rules Manager
Ranking System Manager
Simulator
Advanced Money Management
Screener
ASCII Importer
Downloader
Data Viewer

Artificial Intelligence
Optimizer
Portfolio123

1.2.1 Application

1.2.1.1 Using the software

1.Using the software

1.1. Starting the program

To start the program, double-click the QuantShare icon on the Windows desktop or select QuantShare menu item from the Programs menu.

1.2. Main window

The main application window contains the menu, the toolbars, the docking windows and the chart windows.

1.3. Application settings

You can specify some application settings like the default windows color, the background color, the thread window settings...

To access the application settings (Accounts -> Application Settings)

1.2.1.2 Docking windows

1. Docking windows

A docking window can stick to the main application boundaries or to the other windows boundaries.

1.1. Move a docking window

In the picture below, we have a chart window and four docking windows.
To move the right panel or window to the left, first click on the caption of the right panel (Where it is written Composite in this example).

Move the mouse while keeping the mouse left button pressed; a blue rectangle will appears, continue moving this rectangle to the left panel.

An icon with five rectangles appears, select the right rectangle then release the mouse button.

1.2.1.3 Toolbars

1. Toolbars

This application contains two main toolbars, one located at the top below the menu and the other at the bottom.

1.1. Top Toolbar

The top toolbar contains mainly symbol's selection combo boxes and drawing tools buttons, it contains some other buttons created by the plug-ins and a list of shortcuts.

1.2. Bottom Toolbar

The bottom toolbar is used to display account name and to manage templates, layouts and workspaces.

The bottom toolbar has the following items:

- The current account name
- Templates menu
- Layouts menu
- Workspace menu
- Divers menu, which contains the list of shortcuts
- Symbols working information
- Message and alerts
- Intraday data-feeds

1.3. Accounts

The application starts the first time with a default account name. You can add, remove and update accounts later. Each account has its own items, databases data, quotes...

1.3.1. Account files

Account files are located in the directory 'Databases'.
Each account has a sub-directory in the 'Databases' directory.
Example if your account name is 'Trader' then the full path to this account is 'Application Path\Databases\Trader', and within this directory are located all the objects, databases associated to this account.

1.3.2. Create an account

To create a new account (Accounts -> Add Account)

The database folder is updated automatically after you type the account name.

1.3.3. Change the current account

To change the current account (Accounts -> Change Account)

Select an account then click on 'Open'.

1.3.4. Update an account

To update an account (Accounts -> Change Account)
Select an account then select the 'Update account' tab.
Click on 'Update and reload' when you finish.

1.3.5. Remove an account

To remove an account, click on 'Change Account', select an account then click on 'Delete'.

1.3.6. Associate an existing database to an account

Select (Accounts -> Change Account)
Select an account then click on the 'Update account' tab.
In the database folder textbox, choose an existing directory that contains the data you want to use (usually the directory of another account).

1.2.1.4 Layouts

1. Layouts

1.1. Layouts

A layout contains information such as:
How many panes a chart have?
What is the formula on each pane?
What is the template associated with each pane?

1.2. Create a layout

To create a layout from a chart, right click on that chart and click on 'Save layout as...' type a layout name then saves.

1.3. Default layout

The default layout is the layout that will be used when creating a new chart (View -> New chart).
To set a layout as a 'Default layout', right click on a chart that contains the layout you want to use as a default layout then click on 'Set current layout as default'.

NB: the default layout will be saved as 'Default.lay'. If this file is removed then the program will create a new default layout.

1.4. Remove a layout

Click on the button, in the toolbar, as shown in the picture, select 'Remove layout' and then choose the layout you want to remove.

1.5. Update a chart layout

To update a chart's layout, right click on a chart, select 'Change layout' then selects the layout you want to use.

1.6. Set the same layout to all charts

To set a layout to all opened charts, click on the button, in the toolbar, as shown in the picture, select 'Set layout to all charts', and then choose a layout.

1.2.1.5 Templates

1. Templates

1.1. Templates

Each chart contains one or more panes. A template is a pane visual setting; it defines the pane's back color, grid line width, the axis colors...

You can easily create new templates, modify them, and associate them to other panes... A chart can also contain several panes; each pane can have a different template.

1.2. Create a template

On a chart's pane, right click then select 'Settings' in the menu.

In the settings form, you can update any field by clicking on its value.
When you finish, right click again on the chart's pane and click on 'Save template as...'
Type in the template name then click on "Save".

Gold			$\square \times$
Axes \& Grid	CurEP	SestVS4weeksAgo	
Colors			
Back color			\checkmark
Alpha back color			
X axis color			
Y axis color			
CandleSticks	Colors		
Show single cold	color	$\square \square \square \square$	
Rising bar col	or 1		
Rising bar col	or 2	More Color	
Falling bar co	lor 1	Red	
Falling bar co	lor 2	Pink	
Show Risingl'/	Fal...	,	
Rising bar bord	rd...	Black	
Falling bar bo	rd...	Black	
Stick color		Black	

1.3. Remove a template

Click on the button in the toolbar as shown in the picture, select 'Remove template', and then choose the template you want to remove.

1.4. Update a pane template

On a chart's pane, right click then select 'Change template'; choose a template you want to apply for the selected pane.

1.5. Update several panes' template

Click on the button in the toolbar as shown in the picture.

To update the panes' template of the selected chart, select 'Set template to selected chart' then choose a template. To update the panes' template of all the charts, select 'Set template to all charts' then choose a template.

1.2.1.6 Workspaces

1. Workspaces

1.1. Workspaces

A workspace contains the location of forms and charts.
You can create as many workspaces as you want.

Example: You can create a workspace that contains only charts, another one that contains the download forms...

1.2. Create a workspace

To create a new workspace, click on the button, in the toolbar, as shown in the picture, select 'Save workspace' and then type a name for your newly created workspace and finally click on save.

1.3. Remove a workspace

To remove a workspace, click on the button, in the toolbar, as shown in the picture, select 'Remove a workspace' and then select the workspace you would like to remove.

1.4. Load a workspace

To load a workspace, click on the button, in the toolbar, as shown in the picture, select 'Load a workspace' and then select the workspace you would like to use.

1.2.1.7 Events

1.Application \& Thread events

1.1. Application events

Main application and plug-ins can throw events to notify the 'Event System' that they have completed a task or that a user did an action...

Main application and plug-ins can also subscribe to the 'Event System' and receive notification about a certain event they want to catch.

The plug-in that makes the more use of these events is the 'Task Manager'. Its role is to execute scripts depending on the application or system events and on your settings.

Example of notification:

User creates a "Task Manager"Item that executes the script ' X ' when a new template is applied to a chart.

"Event System" subscribes Task
 Manager to
 'Template Changed' event.

1.2. Thread events

Thread events are events sent by plug-ins, the tasks associated with these events are generally time or CPU consuming tasks.

Example: (Downloading quotes)

The main application catches these events and adds notifications about whether these events start or end into a grid (as shown below)

1.2.1.8 Scripting

1.Scripting

1.1. Introduction

Scripts in the QuantShare software use the .Net framework and the CSharp (c\#) or Jscript.Net programming languages.
.Net Scripts extend QuantShare capabilities and make the application extremely flexible. Scripts can be shared between QuantShare users.

There are two kinds of scripts, main script and specialized scripts.

The main script allows the user to:

- Control the application behavior
- Extract databases data
- Insert, inspect, control and modify database data
- Control the objects (composites, watch lists, list of rules...)

The specialized scripts allow the user to take control over some specific tasks.
The application offers you the possibility to write scripts for the following tasks:

Money management: Contains five events, the first and last events happen once while the other events could happen many times during the backtesting.

- OnStartSimulation: The simulator executes this script before starting the backtesting process.
- OnNewTrade: The simulator executes this script before entering a new position.
- OnCloseTrade: The simulator executes this script before exiting a position.
- OnEndPeriod: The simulator executes this script at the end of each period or bar. (In end of day back-testing, a period is a day)
- OnEndSimulation: The simulator executes this script when the back-testing process ends.

Example: Create a script that initializes an optimizable variable in the 'OnStartSimulation' event Create a script, in the 'OnNewTrade' event, that updates the number of shares to buy depending on the trading system drawdown and the optimizable variable defined in the 'OnStartSimulation' event

Example: Create a time-series metric for your trading system using the 'OnEndPeriod' and the 'OnEndSimulation' events

Note: In money management scripts, you can define global variables that can be shared between events.

List of rules analyzer metrics: Script that let you create metrics to assess rules
Example: Calculate the average performance of a rule for each month.

Ranking system analyzer metrics: Script that let you create metrics to assess ranking systems
Example: Calculate the standard deviation of the buckets annual return.

Simulation metrics: Script that let you create metrics to assess simulations
Example: Calculate a custom metric that uses Sharpe, Sortino and some others ratios

Prediction model metrics: Script that let you create metrics to assess prediction models
Example: Calculate a custom metric that uses others already calculated metrics.

Pre-Parsing data: Script that let you manipulate text or CSV data
Example: Create a new column that is based on others columns data
Example: Update a column data so it can be parsed by the software

Post-Parsing data: Script that let you manipulate parsed data just before the application stores it
Example: Correct bad quotes

URL-Script: Script that let you dynamically create URLs for the downloader to download. The data is then passed to the Pre-Parsing and Post-Parsing scripts if they are implemented.
Example: Grab the download URL from a website that dynamically changes the URL path every day

Functions: Function scripts let you create QuantShare functions. These functions could be used in charting, simulation...

Example: Correct a custom indicator that is not available in the QuantShare indicators list

1.2. Script Control

.Net script shares the same control; the control is an advanced text box control where you can type in your script. You can press on CTRL+SPACE at any moment to display the list of functions or variable that you can use in the current
script.
Each script contains its own functions and classes.
You can click on the right icon to display information about the current script.

```
if(Portfolio.Drawdown < -20 && Variables.GetVariable("pass") == false)
{
    // No new trades for the next 40 bars
    Functions.DontOpenPositionsDuringTheNextPeriods(40);
    Variables.SetVariable("pass", true);
}
```


1.3. Global Variables

The Global variable class lets you define global variables.
This class is present in all scripts (main script and specialized scripts).
Its main functions are: GetVariable and SetVariable.
Example: Global.SetVariable("myvar", 20);
The application will now create a global variable "myvar" that has a value of 20.
You can access this variable from any script. This will allow scripts to interact with each other.

1.4. Create functions inside a script:

You can create inside a script as many functions as you want. You just need to tell the application where the main code
ends. This is done, by using the following keyword: \#functions\#
Example:

```
double a = 0;
for(int i=0;i<10;i++)
{
        a=Sum(a, 1);
}
```

MessageBox.Show(a.ToString());
\#functions\#
public double Sum(double a, double b)
\{

```
    return a + b;
```

\}

This C\# script calls the function "Sum" ten times.

1.2.2 Charting

1.2.2.1 Charts

1. Charts

1.1. Introduction

1.2. Basic operations

1.2.1. Open a chart

View->New chart

1.2.2. Update chart symbol

Select a chart, and then select a symbol from the tool bar; the chart symbol will be automatically updated.

1.2.3. Arrange charts

To arrange charts, click on the button shown below.

\vdots \# — \# - 囲

tfolio123
Arrange charts

You can also specify how to arrange charts by specifying the number of rows and columns.

1.2.4. Create linked chart

A linked chart is a chart that is linked with another one.
If chart ' A ' is linked to chart ' B ', then if we change the chart ' B ' symbol then the symbol of chart ' A ' will be updated as well.

To create a linked chart, select a chart then select (View->New linked chart)

1.2.5. Shortcuts

To display a list of shortcuts, click on 'Divers' in the bottom tool bar, then click on 'List of Shortcuts'.

1.2.6. Zooming

To zoom into a chart, click on CTRL then use the mouse wheel to zoom in and zoom out.

1.3. Panes

Each chart is a collection of panes; a chart can contain one or several panes.
Each pane contains a template and one or many formula files.

1.4. Select Line

There are three select tools available:

- Line when chart clicked
- Cross lines
- Cross lines outside chart

You can specify some settings like color, line width, Stick to (See Drawing tools)...

1.5. Time-Frames

Available periods are day, week, month, year, and custom.
Custom periods let you select the number of days to use as timeframe.

To change a chart timeframe, you have to right click on a chart, select 'Chart Timeframe' in the menu and then select the timeframe.

1.6. Drag \& Drop

You can drag and drop formulas from a pane to another one.
If you click on a curve or a bar, the application will detect which formula this curve or this bar belongs to, you just have then to drag and drop this formula to another pane.

You can also drag and drop a formula to the widget or bookmark panel.
Note that unlike the majority of the other items (Trading systems, watch-lists, composites ...), when the drag \& drop process completes, a copy is saved and not a reference.
This means that if you drag and drop a chart formula to the bookmark panel, then you update the formula in that panel, the chart formula will not change.

1.7. Plot Formulas

Charts are formula based.
You can create charts without writing any line of code, or you can create complex charts using the QuantShare Language.

You can plot candlesticks, lines, bars, smoothed lines, step lines, symbols, and texts.

There is also a special type of graphs called fixed graphs.

You can plot for example something like "Average daily performance for each day of the week", or "number of days up and days down for each month"...

Here is the formula syntax:
PLOTFIXED(vector1, vector2, string vector, calculation function, description, color, ChartStyle, Style);
Let us imagine we want to calculate the average closing performance for each day of week.
Vector1: (Day of week) (one means Monday, two for Tuesday...)

Vector2: (Close price)

10	11	12	10	8	6	9	11	13	12

Intermediate vectors:
X vector:

1	2	3	4	5

Y vector:

10	11	12	10	8
6	9	11	13	12

Then if we have selected "Sum" as calculation function, we will have:

Y vector

16 $(10+6)$	20	23	23	20

In our case, we want the average closing price so Y vector will look like this:

8	10	11.5	11.5	10
$(10+6) / 2$				

At the end, we plot the graph with X vector as X-axis values and Y vector as Y-axis values.

Example formula:

```
// Average daily performance per by day of week
// One day price change
performance = perf(close, 1);
// Day of week
dayofw = dayofweek();
// Change day of week numeric values to text format
text = StringReplace(dayofw ,0,"Sunday");
text = StringReplace(text,1,"Monday");
text = StringReplace(text,2,"Tuesday");
text = StringReplace(text,3,"Wednesday");
text = StringReplace(text,4,"Thursday");
text = StringReplace(text,5,"Friday");
// Plot fixed chart
PLOTFIXED(dayofw, performance,text , iAvg,"Average daily performance per by day of
week",colorGreen,ChartBar,StyleSymbolDiamond);
```


1.7. Formulas Files

Charts don't contain reference to formula files but instead contain formula contents.
This means that even if you remove or update a formula file that a chart was build upon, the chart won't change.
Right click on a chart, and then click on 'Edit formula' to edit a chart formula.
Only the current chart will be affected if you update the formula or change its name.

You can save the content of this formula to a file and use it later with other charts.

1.2.2.2 Drawing tools

1. Drawing tools

1.1. Drawing tools list

List of the available drawing tools:

- Line
- Extended line
- Horizontal line
- Vertical line
- Regression channel
- Triangle
- Ellipse
- Trend line
- Pitchfork
- Rectangle
- Cycle line
- Arc
- Zigzag
- Parallel lines
- Arrow
- Text
- Marker
- Gann fan
- Gann square
- Fibonacci extension
- Fibonacci retracement
- Fibonacci time extension
- Fibonacci time zones
- Fibonacci arc
- Fibonacci fan

1.2. Usage of the drawing tools

Select a drawing item then click on the chart, point the mouse to a second location then click on the left mouse button.

Some drawing tools require three points or more.

1.3. Drawing tools settings

Each drawing tool has its own settings. You can update these settings by clicking on the right mouse button when the cursor is pointing on the drawing item.

Some settings are common to all the drawing tools, while others are specific.

The common settings are:
Line color
Line width
Line dotted or not
Locked or not
Stick to (high, low, close, open, all and no stick)
Stick only near candle

Examples of specific settings:
Line: In the line tool, a setting named ' X axis distance' and another one named ' Y axis distance' let you draw distances on a chart.

The line can be transformed to a 'Support resistance line'.
On a support resistance line, the letter 'S' means that your line now is a support, while a letter 'R' means that the line is a resistance.

Regression channel:

1.4. Remove a drawing tool

Right click on a drawing tool to open the settings form; click on 'Delete'.
To delete all the drawing tools, right click on the chart then select 'Delete all studies' in the menu.

1.5. Saving drawing tools

To save a drawing tool settings:

- Right click on that drawing item
- Update the settings according to your preference
- Click on 'Save Settings' button

1.2.2.3 Auto drawing tools

1.Auto drawing tools

Auto drawing is a feature that automatically draws on a chart whenever a chart symbol changes or a new chart window opens.

You have to choose which drawing tools you want to use, then specify the number of days to use and the application will take care of the drawing.
The drawing generated by this feature is locked.
To unlock it, just right click on the drawing then uncheck 'lock position'.

1.2.3 Symbols

1.2.3.1 Symbols

1. Symbols

A symbol references a stock, an option, an index, a composite...

1.1. Add Symbols

To add symbols to your database (Symbol->Add Symbols)
You can add symbols in two ways:
1 - Insert comma separated symbols in the field then click on 'Add'
2 - Specify a file that contains a list of comma separated symbols.

You can also add symbols by downloading a list of symbols from the Sharing Server.
List of symbols are a collection of symbols shared by other users.
After you download a list of symbols. Select "Symbols" in the application main menu, then click on "Add-Remove from list of symbols". Click on "Select" to select a list, then click on "Add".

1.2. Remove Symbol

Select (Symbol -> Update Symbols)
Browse through the symbols and click on 'Remove' on the symbol you want to delete.

NB: Use the bulk symbol updater to remove many symbols at once.

You can also remove symbols that belong to a list of symbols. To do so, select "Symbols" in the application main menu, then click on "Add-Remove from list of symbols". Click on "Select" to select a list, then click on "Remove".

1.3. Update Symbols

Select (Symbol->Update Symbols)

You can update all symbols' information within this form.
After you have done, click on 'Update'.
NB: Use the bulk symbol updater to update many symbols at once.

1.4. Bulk symbol updater

The 'Bulk Symbol' is used to update many symbols at once. (Symbol -> Bulk Updater)

1.5. Create a list of symbols

There are two ways to create a list of symbols:

- Select "Symbols" then click on "Create a list of symbols". Specify the symbols to include using the "Symbols Selection Control" then click on "Create"
- Select "Symbols" then click "Create a list of symbols from a file". Type a separator then click on "Load file" to load a file that contains your symbols. The first row lets you specify the type of each column. For example: the symbol name should be associated with the keyword "name". After you finish, click on "Create List".

You can use this list to add symbols in another account, or you can share this list, so other members can use it. They will thank you.

1.2.3.2 Symbols Selection

1. Symbols Selection

1.1. Symbols selection control

You will often need to select certain symbols among the list of all available symbols.
Whether it is for creating a composite, a trading system or a watch-list, the process of symbols selection is very easy. We have created a unique control that is used by all the plug-ins.

You can select symbols using a single or a combination of filters:

- By group: select symbols that belongs to specified groups
- By sector: select symbols that belongs to specified sectors
- By Industry: select symbols that belongs to specified industries
- By Index: select symbols that belongs to specified indexes
- By Market: select symbols that belongs to specified markets
- By Entering symbols (list): click on 'select symbols', then enter manually the symbols you want to include.
- Randomly: type a value from 0 to 100 . Zero means select no symbols, and 100 means select all symbols.
- Custom filter: create a custom filter (see custom filter section)

In order for a symbol to be selected, it must pass all the filters.
You can also make the filter act differently by clicking on the icon as shown in the picture below.

IE	Name	Values	Cou...	R
0	cust...	name	1281	-
	Sear...	a^{*}		
x	cust...	name	1241	208
	Sear...	aa*		
	Re	ject symb		

Example:

Total symbols: 8000.
Filter1: Random; 50 percent. Number of symbols that passed the filter: 4000.

Number of symbols selected: 4000 symbols.

Filter2: Symbols whose names begin with 'a'. Number of symbols that passed the filter: 700.
Number of symbols selected: 380 symbols.

Because of the way the 'Random' filter is used in this selection process, if you run these filters again, you may end up with slightly different results.

1.2. Custom Filter

When selecting a custom filter, you can use pre-calculated data to filter symbols.
A Pre-calculated data can be a number, a text, a date or a boolean (true or false).
For each type you have to enter or select one or more values in order to create the filter.

Numeric:

Example: number of drawing objects.

IE	Name	Values		Cou...	R	
Q	cust...	number of drawing			0	0
	From	0	To	0		

You have to specify the start and the end values. All symbols that have a number of drawing objects within these values will be selected.

Date:

Example: date of last quote

IE	Name	Values		Cou...	R
	cust...	date of last quote		8	0
	From	$01 / 01 / 2008$	To	$01 / 04 / 2009$	

You have to specify the start date and the end date.

Boolean:

Example: active symbols (active)

IE	Name	Values	Cou...	R
	cust...	active	14993	
	Che...	True		

You have to choose between TRUE or FALSE.

Text:

Example: symbol name (name)

IE	Name	Values	Cou...	R
\bigcirc	cust...	name	1281	,
	Sear...	a*		

You have to enter one or more values. Values are separated by semicolon.
A value can contain the following characters: (multiply *), (point .)
Examples:
A : select the symbol which name is ' A '.

A*: select symbols whose name start with ' A '.
A.(1 point): select symbols whose names start with ' A ' and have only two characters.
A..(2 points): select symbols whose names start with ' A ' and have only three characters.
A: select symbols whose names contain the character ' A '.
$A^{*} ; B^{*}$: select symbols whose names start with ' A ' or ' B '.

1.2.4 Data

1.2.4.1 Databases

1. Databases

There are two types of databases:

- Quote database
- Custom database

The quote database contains symbols quotes, while the custom database can contain any text or numeric data. Example: news database, fundamental database

The custom database can be a daily or an intraday database.
A daily database is a database where each row represents a day while in an intraday database each row represents a date and a time.

1.1. Create a custom database

In 'Data' menu; click on 'Edit databases'. (Data->Edit databases)
In the new form, click on the tab' name 'Creator'.

Type in the name and the type (Historical or Intraday) of the database then click on 'Add new custom database'.

1.2. Delete a custom database

In 'Data' menu; click on 'Edit databases'. (Data->Edit databases)
In the new form, click on the tab' name 'Creator'.
Select a database in the 'Choose database name' combo box, then click on 'Delete'.

1.3. View data contained in a custom database

In 'Data' menu; click on 'Edit databases'.
In the new form, select 'Custom' in the 'Choose quote or custom database' combo box, then select a database name in the 'Choose database name' combo box.
Browse symbols by selecting a symbol in the 'Choose a symbol'. The database data, if any, should appears on the grid.

E Database Editor												- [(x)
Edice	Cinstor												
Databate					Date		Close	Open	High	Low	Volume		A
Choose qucle or cuitom drabsie:			Ouodes		30/05/2008		24.92	24,92	24.92	24.92	0		
			Quotes		31/03/2008			21.9	21,9	21.9	0		
					31/12/2009		22,19	22.19	22.19	22.19	0		
					30/09/2007		19,42	19.42	19.42	18.42	0		
					$30 / 06 / 2007$			17.7	177	17.7	0		
					31/03/2007		17,21	17.21	17.21	17,21	0		
					$31 / 12 / 2006$		17.4	17.4	17.4	17.4	0		
					$30 / 09 / 2006$			17	17	17	0		
Sjubote					30/06/2006		17,05	17.05	17.05	17.05	0		
Choose a tymbol:			"zp500pe		$31 / 103 / 2006$		17.82	17.82	1782	17.82	0		
- Inlomations					30/09/2005		18.45	18.46	18.46	18.46	0		
					30/08/2005			188	188	18.8	0		
Number of lields :		6			31/03/2005		19.57	19.57	19.57	19.57	0		
Number of dots:					31/72/2004			20.7	20.7	20.7	0		
		288			30/09/2004		19.29	19,29	19.29	19.29	0		
					30/05/2004		20.32	20.32	2032	20.32	0		
					31/03/2004		21.56	21.65	21.65	21.65	0		
					31/12/2003		22.81	22.81	22.81	22.81	0		
					30/09/2003		25,82	25,82	25,92	25.82	0		
					$30 / 06 / 2003$		28.21	28.21	28.21	28.21	0		
					31/103/2008		27.97	27,97	27.97	27,97	0		
					$31 / 12 / 2000$		31.89	31.89	31.89	31.89	0		
					$30 / 09 / 2000$		27,14	27,14	27.14	27.14	0		
					$30 / 06 / 2002$		37.02	37.02	37.02	37.02	0		
					31/03/2002			46.45 465	45.45 45.5	46.45	0		\checkmark
					$31 / 2 / 2001$		465	46.5	455	455	0		
										Save	Undo change:	Expon to CSY	
Information: Double click to edt a cell right click to open a llosting mern													

1.4. Add a field in your database

Select a custom database.
Type the field name in the text box near the button 'Add new field', select the field type in the combo box located above the text box, and then click on 'Add new field'. A new field will appear in the grid.

1.5. Remove a field in your database

Select a custom database.
Click on the 'Remove this field' button, select the field you want to remove, and then click 'OK'.

1.6. Fill a database field

Select a custom database.
Type a value on the text box near the button 'Fill field'.
Click on the 'Fill field' button, select the field you want to fill then click 'OK'.

1.7. Fill a custom database

Right click on the grid then select 'add line' or 'add multiple lines'.

1.8. Save and Undo changes

Quotes and custom databases data can be modified manually in the grid.
You have to click on 'Save' to save the new data.

Click on 'Undo changes' button to undo all your previous changes.

1.9. Export data

The 'Export to CSV' button is used to export the current grid data to CSV.

1.2.4.2 Application Objects

Application Objects

Introduction

We use the word 'object' or 'item' to point out:

- Trading systems
- Watch-list
- Composite indexes
- List of rules
- List of symbols
- Simulator metrics
- ...

All these objects share some common controls.

These controls are used to manage, save and load these objects.

Each object is stored in a specific file.
To rename an object, double click on its name, and then type a new name.
An object can either belong to a category or not.
These objects can be shared, you can visit www.quantshare.com for a list of all shared objects.

The majority of the plug-ins have drag \& drop features that let you drag objects and drop them on widget or bookmark panels.

Bookmark panel

This panel hosts folders and objects (generally shortcuts of objects are used)
Right click on the bookmark panel to open a menu. Using this menu, you can create a new folder, add an object or object shortcut, update a folder name...

You can drag and drop objects within the bookmark panel to change their locations or to move them from a folder to another.

```
\squareMy objects 1] Composite:_average_rsi i] Bollinger Bands With AdaptiveZones #aa Eaaaa i] Bollinger Bands
EA. aaaa
N rsisimple
    Trading System 'rsisimple'was not found
#ew
    DynamicWatchList-Number of Symbols :20
N+N
    Trading System 'rsisimple'was notfound
#*erat
    WatchList Item test' was not found
\square \text { Folder1}
] AccuTrack
    15 lines
Tranking rsi
Optimize Item 'ranking rsi' was not found
Tranking rsi
Optimize Item 'ranking rsi' was not found
azz
WatchList Item 'azz' was notfound
```

Right click on any object to display a menu. The menu content is specific to each object type.

Example: 'Trading system' object menu.

Edit folder name

Delete

Add shortcut...
Add folder...
Edit Trading System
Simulate Trading System
Optimize Trading System
Default DoubleClick Method

1.2.5 QuantShare Language

1.2.5.1 QuantShare Language

1.QuantShare Language

1.1. Introduction

QuantShare language is a simple, complete and fast scripting language.
It is a vector based language and contains more than 200 build-in functions and indicators.
Example of a vector-based language: if you type 'a=1'.
The variable 'a' will be represented as an array of N elements (N represent the number of bars for a specific symbol) where each element of the array has a value of ' 1 '.

Other examples:
c = close;
This is the representation of the ' c ' variable.

10.5	11	11.2	11	10.8	10.5	10	10	10.3	11.2

The current symbol has 10 quotes (elements).
The first column represents the first bar or bar number ' 0 '.
If we type now: $\mathrm{c}=$ close +2 ;
The representation of the ' c ' variable will be:

12.5	13	13.2	13	12.8	12.5	12	12	12.3	13.2

We added "2" to each element of the array.
You can see these arrays at any time using the debugger tool. (Right click on the editor).

In the next example, we will use a very common function 'ref', this function let you refer to old or future quotes. $c=r e f(c l o s e, 1)$ makes the array shift by one bar to the right.

NA	10.5	11	11.2	11	10.8	10.5	10	10	10.3

'NA' means that the element of the array contains no data.

1.2. Basic Concepts

A variable can be a number or a string.
v1 = "test"; (assign the text 'test' to the variable 'v1').
v2 = 2; (assigns the number 2 to the variable v2).

You cannot do math calculation using both numeric and text variables.
v3 = v2 + 2; (Correct)
v3 = v2 + v1; (Not Correct)
To concatenate two string variables or a string and a numeric variables: use "." (Point)
v3 = "test ".v2." test";

There are two types of functions:

- Void function or function that does not return a value Example: 'Plot' function plots a time-series on a chart.
- Functions that returns a numeric or a string array

Example: 'Rsi' (Relative strength index indicator) returns a numeric array.

1.3. Edit a formula

Click on 'New Chart' in the 'View' menu to open a new chart.
Right click on the chart and click on 'Edit Formula'; the formula editor will open.

1.4. Add functions

There are two ways to add a function:

- You can add a function by typing it in the formula editor.
- You can add a function by clicking on the 'Add void' or 'Add function' buttons; the 'Function selector' form will appear.

Search			Function: GetData					
Category:	All	\checkmark	Get an array from a database field					
1 Database Field 1 Database Field Count 1 Database Field Index 1. Database Field Index In... 1 Database Field Index Ti... 1 Database Field Index Co... 1 Is Database Field Exists 1 PreCalculated Value 2 PreCalculated Value 1 Cratos.		\wedge						
		Parain	Value				\wedge	
		databa...	"downgrades"		閶	30		
		field n ...	"title"			- 1		
		tupe	LastData			31	v	
		\checkmark	\checkmark Numeric	Undo	Cancel		Ok	

1.5. Function selector

1.6. Using the wizard

Click on 'Switch to wizard', in the formula editor form.

There are five columns in the wizard:

1. Variable name (Red)
2. Line of code
3. Button to add 'Void' functions
4. Button to add 'Return' functions
5. Button to remove a line

You can type '//' in the second column to specify to the compiler that this line is a commentary line. Switch to the normal editor by clicking on 'Switch to editor' button.

1.7. Functions to plot time-series

Here is the list of the functions that let you plot data:

- Plot: plots a vector; you can specify the color, the graph type...
- Plot1: plots two vectors, example: higher and lower Bollinger bands.
- PlotCandleStick: plots an OHLC chart
- PlotFixed: plots a fixed chart, example: average performance per day of the week or volatility for the next ten days per Relative Strength Index values
- PlotSymbol: plots symbols above or below other graphs.
- SetMaxScale: sets the Y-Axis maximum value.
- SetMinScale: sets the Y-Axis minimum value.
- SetScale: sets the Y-Axis maximum and minimum value.
- UpdateColor: updates a graph color, on certain X-Axis values.

1.8. Update formulas dynamically

Move the mouse over a graph then right click, a small form will appear.
Tabs shown on that form refers to functions available in your formula.
If for example your formula is:
$r=r s i(14) ;$
Plot(r, "RSI", colorRed, ChartLine, StyleOwnScale);
Two tabs will be available (Rsi and Plot).
Under Rsi tab there is a cell whose name is 'timePeriod'; this cell has a value of " 14 ".
Click on that value, and update it using the numeric text box or the track bar.
See how the graph updates dynamically while you change this value.

Click on the green button to make the form stick.

Rsi	Plo			
Relative Strength Index				
\checkmark Enabled Delete				
time		14		

1.9. AutoComplete tool

In the 'Formula Editor', press on CTRL+SPACE, a list of 'Void' functions appears.

Now type something like 'a = ', then press on CTRL+SPACE, another list appears; this list contains all 'Return' functions.

There is also an 'AutoComplete' button on the 'Formula Editor'; click on that button, then type in something in the editor, the 'AutoComplete' list now appears each time you type in a letter.

1.10. Tooltip information

Tooltip shows you information about functions.
There are two kinds of Tooltip; one that appear right after you type in '(', example: 'Plot ('. The other Tooltip appear when you move the mouse over a function.

```
Plot 1 1 of 1 void Plot(NUMBER array, STRING description,CONST color,CONST chart type,CONST style)
Plot(
```


1.11. Debugger

The debugger displays the elements of the variables initialized within the formula.
In the 'Formula Editor', right click on the editor.

Summary Debug mode	Summary	Debug mode		
There is no errors in your formula	Bar	Close	Volume	ㅅㅡㅡㄹ
- There is no errors in your formula	3229	11,69	3763600	
(1) Ticker name: ABl	3228	11,6	2409800	
\bigcirc Number of initized vars:0	3227	11.61	2106600	
2s Number of initilized vars : 0	3226	11.69	2192400	
	3225	11,68	1676000	
	3224	11,94	2451600	
	3223	11.81	1628000	
	3222	11.83	2460700	
	3221	11,6	2217200	
	3220	11.56	2889100	
	3219	11.56	3901000	
	3218	11.12	3033800	
	3217	10,94	1314200	
	rever	10	1-1900.	\checkmark

1.12. Formula errors

When typing a formula, an icon located at the top shows you whether your formula syntax is correct or not, clicking on that icon shows you the formula errors if any.
The icon is red when there is an error otherwise it is blue.

The location of the error is underlined with a dotted line.

霜 Formula : C:Documents and SettingshazouzMes documentsVisual Studio 200... $\square \square \times$
File Edit
维Update graph © 9633661512109554000 2 Formula(s) Fom Autocomplete
AddVoid
$\mathrm{b}=\mathrm{rsia}(15)$;
Plot $\left(\mathrm{b},{ }^{r r}\right.$, colorBlack, chartLine, style0wnscale $)$;
Compilation
status:
0 Error $(\$)$

After compiling the formula by clicking on 'Update Graph', the errors if any will be listed on the 'Compilation status' text box.

1.2.5.2 Advanced Rules

1. Advanced Rules

1.1. Searchfor

Used to detect any complex pattern
Used to create advanced trading rules
Let you create unrestrictive rules

Syntax:

> Searchfor syntax1 then syntax1 for (rule) set (special_rule)
syntax1: special_rule after period within period all
special_rule: Special rule (Supports QuantShare functions + special functions)
rule: Normal rule (Any rule that could be created using the QuantShare language)

Explanation: this function looks for successive events.
Example: search for a stock that rises 20 percent within 30 bars, then drops by 10 percent for the next $10-20$ bars.

After (optional): specify that special_rule will be checked only after the number of bars specified after the keyword after

Within (optional): specify that special_rule must be TRUE in at least one of the bars starting from 'current bar' + 'after value' to 'current bar' + 'after value' + 'within value'

All (optional): specify that special_rule must be TRUE for all the bars starting from 'current bar' + 'after value' to 'current bar' + 'after value' + 'within value'

For (optional): calculates the pattern only when the rule provided in (for) keyword is TRUE

Set (optional): The Searchfor function returns 1 on bars where the pattern is found, if we specify a formula in (set) keyword, the Searchfor function will returns the result of this function instead of 1

Special functions (that could be used in special_rule):

- _perf (Array): Gets the percent of change from the specified array, from the bar where the previous condition occurred to the current bar.
- _ perf(Array, lag, length): Gets the percent of change from the specified array, from "the current bar minus lag minus length" to "the current bar minus lag".
- _change (Array): Gets the raw change from the specified array, from the bar where the previous condition occurred to the current bar.
- _ change (Array, lag, length): Gets the raw change from the specified array, from "the current bar minus lag minus length" to "the current bar minus lag".
- _avg (Array): Gets the average value of the specified array, from the bar where the previous condition occurred to the current bar.
- _avg(Array, lag, length): Gets the average value of the specified array, from "the current bar minus lag minus length" to "the current bar minus lag".
- _min (Array): Gets the minimum value of the specified array, from the bar where the previous condition occurred to the current bar.
- _min (Array, lag, length): Gets the minimum value of the specified array, from "the current bar minus lag minus length" to "the current bar minus lag".
- _max (Array): Gets the maximum value of the specified array, from the bar where the previous condition occurred to the current bar.
- _max(Array, lag, length): Gets the maximum value of the specified array, from "the current bar minus lag minus length" to "the current bar minus lag".
- _sd (Array): Gets the standard deviation value of the specified array, from the bar where the previous condition occurred to the current bar.
- _sd (Array, lag, length): Gets the standard deviation value of the specified array, from "the current bar minus lag minus length" to "the current bar minus lag".
- _ref (Array, index_lag): Gets a value from the specified array on the bar where the condition "last condition index minus the specified index_lag" occurred.

Index equals to 0 means get a value from the specified array on the bar where the last condition occurred.
Index equals to 1 means get a value from the specified array on the bar where the next to last condition occurred.

FRef (Array): same as the last function but uses zero as "index_lag"

- _dis(index_lag): Gets the distance (in bars) between the current bar and the bar where condition "last condition index minus the specified index_lag" occurred.

Index equals to 0 means get the number of bars between the current bar and the bar where the last condition occurred.

- _iff (condition, if_true, if_false): Evaluates and returns the result of the if_true formula if the condition is TRUE, otherwise evaluates and returns the result of theif_false formula.
- _slope (Array): Gets the slope of the line that starts at the array value for the bar where the previous condition occurred to the array value of the current bar.
- _slope (Array, lag, length): Gets the slope of the line that starts at the array value for "the current bar minus lag minus length" to the array value of "the current bar minus lag".
- __aboveline (Array1, Array2): Returns TRUE if all the elements of the Array2 between the bar where the previous condition occurred to the current bar are ABOVE the line that starts at the Array1 value for the bar where the previous condition occurred to the Array1 value of the current bar.
- _aboveline (Array1, Array2, lag, length): Returns TRUE if all the elements of the Array2 between"the current bar minus lag minus length" and "the current bar minus lag" are ABOVE the line that starts at the Array1 value for "the current bar minus lag minus length" to the Array1 value of "the current bar minus lag".
- __belowline (Array1, Array2): Returns TRUE if all the elements of the Array2 between the bar where the previous condition occurred to the current bar are BELOW the line that starts at the Array1 value for the bar where the previous condition occurred to the Array1 value of the current bar.
- _belowline (Array1, Array2, lag, length): Returns TRUE if all the elements of the Array2 between"the current bar minus lag minus length" and "the current bar minus lag" are BELOW the line that starts at the Array1 value for "the current bar minus lag minus length" to the Array1 value of "the current bar minus lag".

Notes:
Special functions start with "_"
_change(close) is equivalent to _change(close, 0, _dis(0))

Example:

Let us say we want to look for stocks that have the following pattern:

- Positive performance of at least 20 percent in the last 30 bars
- Then a negative performance of at least -10 percent in a period between 10 and 50 bars, during this period the stock close price must be lower than the price at which the last condition occurred
- Then a positive performance of at least 20 percent within the next 30 bars

Here is the formula that describes this pattern:
rule $=$ Searchfor perf(close, 30) > 20
then
_perf(close) <-10 \&\& _max(close) $<=$ _ref(close)
after 10 within 50
then
_perf(close) > 20
within 30;

Explanation:

- Positive performance of at least 20 percent in the last 30 bars. "Perf" is a vector-based function, while "_perf" is a special function.

```
perf(close, 30) > 20
```

- Then a negative performance of at least -10 percent in a period between 10 and 50 bars, the _perf functions doesn't need a period parameter as perf do, because it will use the (current bar - last condition bar) as the period parameter

```
_perf(close) < -10
```

during this period, the stock close price must be lower than the price at which the last condition occurred. Note the difference between close and _ref(close). Close references the close price for the current bar, while _ref(close) references the close price of the last condition bar. _ref(close, 1) references the close price of the next to last condition bar if it exists (otherwise it takes the last condition bar). Now, we only have one condition (perf(close, 30) >20), because the current condition is not evaluated yet.

```
_max(close) <= _ref(close)
```

- Then a positive performance of at least 20 percent within the next 30 bars.

```
perf(close) > 20 within 30
```


The first and the second panes contain the same 'Searchfor' formula.
They do not look the same because if a 'Searchfor' rule is plotted on a pane where a candlestick chart is available then the signal and conditions will be shown as triangles marks.

1.2. Output

Used to simulate outputs

References future bars

Could be used to create custom outputs when analyzing trading rules or when creating prediction models

Syntax:

Set syntax1 where syntax1 then syntax1 for (rule)

syntax1: special_rule after period within period all
special_rule: Special rule (Supports QuantShare functions + special functions) (look at Searchfor paragraph) rule: Normal rule (Any rule that could be created using the QuantShare language)
(then syntax1) is optional.

Special rules are the same as in Searchfor.

Example:

Select 'Analysis' in menu, then click on 'Rules Manager'.
Select or create some rules then click on 'Analyze'.
Select 'Outputs' on the left panel, and then click on 'Select Outputs' on the right panel.
On the new 'Output' form, select 'Custom output' in the list, and then click on 'Add'.
On the right panel, select the newly created output and then click on 'Edit'.
Click on 'click here to select an example' and choose '... hedging with an option put'

This formula simulate an entry with a simultaneous buy of an option put.
In the Where input, _dis(0) >=60, means that we evaluate the output with the condition that the number of bars equals to 60 , in other words we exit after 60 bars.
In the Set input, we used a conditional statement to simulator the hedging strategy.
If the instrument return is higher than - 20 percent then we want to set the return minus the cost of the option (2 percent) as output.
If the instrument return is lower than -20 percent then the output will be -20 percent (the maximum we can lose). The _perf(close) calculates the performance of the instrument from the current bar to the bar where the last condition occurred, and in this example the last condition is _dis(0) $>=\mathbf{6 0}$, so we get the return of the next 60 bars.

This example is just a simulation of a hedge strategy and assumes:
The option expires in 60 bars
The option costs is 2 percent of the instrument price
The option strike is at -20 percent of the current instrument price
(If the price is $100 \$$, the strike is at $80 \$$, and the option price is $2 \$$)

1.3. Controls

Right click on a pane, and then select 'Edit formula'
Type CONTROL+SPACE, then select 'SEARCHFOR...THEN' or 'SET...WHERE...' to have a form appears.
You can type your rules directly in the inputs provided, or you can check the example provided.
Click on 'Disabled' and select an item to enable inputs.
When done, click on 'OK', your formula should appear in the formula editor.

1.4. Additional keywords

NoJump: This keyword tells the application not to jump after a pattern is discovered.
The default behavior (for speed purposes) is to jump to the bar where a pattern is discoverd, and to continue the search beginning from that bar.
Example: Starting from bar 5, the "searchfor" function discovered a pattern at bar 50.
The next search will begin at bar 51. However, if "nojump" were specified then the search would start at bar 6.
What you need to know is that using "nojump" keyword enables the application to discover more patterns. However, the drawback is that the function will be much slower.
The "NoJump" keyword works only with "Searchfor". The "Set" advanced rule uses the "nojump" automatically. This is because this function must return a value for each bar.

Example of usage: (nojump must be placed just after the SEARCHFOR keyword) varl = SEARCHFOR nojump gapup() THEN perf(close) > 20 after 10 within 100;

Depth: This function tells the application to perform deep analysis of a particular condition. This will sometimes lead to the discovery of more patterns. By default, the application applies a depth of one.

Example:
varl = SEARCHFOR gapup() THEN close > ref(close, 1) after 10 within 100
depth (5) THEN gapup() depth(10);

1.2.6 Plug-ins

1.Plug-ins

A Plug-in is a program that interacts with the main program and brings him more functionality.

This is the list of the currently available plug-ins:

- Indicators
- ASCII Importer
- Downloader
- News
- Divers
- Task Manager
- Script Manager
- Watch list
- Custom functions
- Composites
- Widget Panel
- Screener
- Rules Manager
- Ranking System Manager
- Simulator
- Advanced Money Management
- Artificial Intelligence
- Optimizer
- Portfolio123
- Sharing Server

1.2.6.1 Indicators

1. Indicators

1.1. Introduction

More than 100 indicators are available:

- Relative Strength Index
- Aroon Oscillator
- Bollinger Bands
- Average True Range
- Absolute Price Oscillator
- On Balance Volume
- ...

1.2. Open the indicator form

Click on 'Indicators' in the 'View' menu.
Select a category, and then select an indicator.
Right click on that indicator and a menu will show up.
On that menu, you can edit the indicator files, rename them, create new ones and set the action to take when you double click on them.

1.3. Drag \& Drop indicators

In the indicator form, click on an indicator then drag \& drop it to a chart.
You can also drag any pane formula and drop it into another pane.

1.4. Add an indicator to a chart

Besides adding indicators by updating the chart formula, you can add indicators using the indicator form by either double clicking on an indicator or drag \& drop the indicator to a chart. You can also right click on a chart, select 'Indicators' then click on 'Add study'.

1.5. Create your own indicator

You can create your own indicator using the 'Custom functions' plug-in.

1.2.6.2 Custom functions

1. Custom functions

1.1. Introduction

This plug-in lets you create custom function that you can use in your formulas. Functions are created using CSharp or JScript.Net languages.

Let us say you created a function which have two numeric parameters and whose name is 'MyFunction'.
To use this function, open the formula editor (Right click on a chart, then click on 'Edit formula'), type for example 'a = ', then click on CTRL+SPACE; in the list box you will find your function 'MyFunction'.

1.2. Create a new function

Open the 'Create functions' form by clicking on 'Create functions' in the 'Tools' menu.

In the 'Create functions' form, click on 'Add', type a name then save.
Select the function, you have just created, in the 'Functions' panel, then move to the 'Script' panel.
Press on 'CTRL+SPACE' to see the initialized variables.

The application creates a variable for each parameter.
'result' is the variable that your function will return to the application
'result' is of type 'VectorD' if your function returns a numeric time-series or 'VectorS' if your function return a string time-series

Example: to create a function that returns an array containing the value ' 2 '.
Type this code in your script panel:

```
for(var i: int = 0;i<result.Length;i++)
{
    result.SetValue(i, 2);
}
```

You can add parameters to your function, by clicking on 'Add a parameter'.
You can update the parameters name, type, default value and description.
After adding a parameter, press on CTRL+SPACE to see the new variable in the list.
Example: to create a function that adds one to the provided parameter and returns the new array.

```
var val : double;
for(var i: int = 0;i<result.Length;i++)
{
    val = var1.GetValue(i);
    result.SetValue(i, val + 1);
}
```

When done, click on Save.

1.3. Update a function

Clicking on 'Save' button will compile the function and updates it.

1.4. Remove a function

Select a function, click on 'Remove' then confirm.

1.5. Functions

The 'cFunctions' class contains the symbol name, close, open, high, low, volume, open interest and date vectors of the symbol that is used when executing a formula.
Example: To get the close vector, type:
var close : VectorD = cFunctions.Close;

Create an empty vector

To create an empty numeric vector, type:
var vectorNumeric : VectorD = cFunctions.CreateNumericVector();

To create an empty text vector, type:
var vectorText : VectorS = cFunctions.CreateTextVector();

This class also contains three important functions:

CompileFormula: This function compiles a QuantShare formula and returns a QSFormula class. This class can be used to extract vectors.

Example: cFunctions.CompileFormula("a = rsi(14);").GetVectorDouble("a");

GetCustomDatabaseData: This function loads custom database data for the current symbol or another one and returns a VectorCustom class.
The vectorCustom class is like the other vector classes with the difference that it can contain more than one element in a bar period.
If you execute a function on a daily timeframe and you reference an intraday database (news for example), then for a specific bar (date), you may have more than one news item.

SetForwardAndBackwardBars: This function let you define how many backward and forward bars your formula use. Forward and Backward bars are used to optimize the execution of formulas.

As an example, the RSI or relative strength index function (rsi(14)), uses 14 backward bars and 0 forward bars.
Because for each bar, it needs the previous 14 bars to perform its calculation and it does not require any future bar.

1.2.6.3 Composite

1. Composite

1.1. Introduction

Create any kind of composite using this plug-in.

Examples of composites:

- Percentage of stocks trading above their 50-day moving average
- Number of advancing stocks within a sector
- Price to book ratio of the entire US stock market
- Percentage of stocks that have an overbought RSI

The composite plug-in automatically detect if there are new quotes and recalculate the composites if necessary.

1.2. Create a composite

Tools -> Composite
Click on 'Add' to open a new form.

Select the symbols you want to include in the composite calculation.
'Include composite tickers' check box is used to specify whether to include composite symbols or not.
N.B: If there are two composites which have this box checked, a calculation error will appears in the case where composite 'A' symbols include composite 'B' and composite 'B' symbols include composite A.

Type then the composite formula, choose the calculation function, the start and end periods, then the composite name, full name and description.
The new composite will be added to the 'Composite' form's grid and the calculation will start.

1.3. Update a composite

In the 'Composite form', select a composite item and then click on 'Update' button.

1.4. Remove a composite

In the 'Composite form', select a composite item and then click on 'Remove' button.

1.5. Re-Calculate a composite

In the 'Composite form', select a composite item and then click on 'Recalculate' button.
To recalculate all the composites, click on 'Recalculate all' button.

1.6. Composite Plug-in Settings

In the 'Composite' form, select the 'Settings' tab.
You can select whether the composite should be recalculated automatically on new data or not.

1.2.6.4 Watch list

1. Watch list

1.1. Introduction

This plug-in displays symbols that meet your criteria.
Watch lists are updated dynamically; list of symbols contained in the watch lists automatically changes on new quotes or new databases data.

To open the watch list plug-in:

- Click on menu 'Tools'
- Click on item 'Watch List'

WatchList						$\square \times$
D	ax					
Symbols	Filters	Static watchlist		Dunamic watchlist	Confiq	
Symbol		fullname	$f f$	Sort	A	\wedge
A.A 1			Test	t -1		
Al			Test	$t \quad-0,023$	985239...	
AKE			Test	$t \quad-0,009$	994572...	
$A D E$			Test	$t \quad-0,009$	102730...	
$A C$			Test	$t \quad-0,003$	669724...	
ALT			Test	$t \quad-0,003$	78378...	
AACC		Asset Ascept... T		$t \quad 0$		
AACS				0		
AAGH		Asia Gilobal H... T	Test	t 0		
AAI		AirTran Holdin... T		t 0		
AAll				0		
AAIR		Avantair, inc. T	Test	$t \quad 0$		
AALA		AmerAlia, Inc T	Test	$t \quad 0$		

1.2. Create a simple watch list

A simple watch list is a watch list where you can specify simple criteria, example: symbol names, symbol market... To create a simple watch list:

- Click on 'Filters' tab in the 'Watch-list' form
- Create your filter
- Click on 'Show'

1.3. Create a static watch list

A static watch list is a watch list that contains a list of symbols.
To create a static watch list:
Click on 'watch-lists' tab in the 'Watch-list' form

- Type the symbols

Click on 'OK'
If you want to create a static watch list from the active watch list, just click on 'Create from active watch list' button after typing a watch list name.

1.4. Create a dynamic watch list

A dynamic watch list is a watch list where you can specify complex criteria.
Dynamic watch-lists update its list of symbols dynamically on new data.

To create a dynamic watch list:

- Click on 'watch-lists' tab in the 'Watch-list' form
- Click on 'create dynamic watchlist'
- In the new form, set the filter
- Click on 'Next'
- Type your formula and make sure it is correct by clicking on 'Compile'
- Click on 'Finish'

After clicking on "Finish", the watch list plug-in will display all the symbols and start the calculation process.

When the calculation process is done, symbols that fail to pass the criteria are removed.
The dynamic watch list will calculate the variable 'filter' for each symbol and if this variable is true or different from zero then it will include the symbol.

Example: Select overbought symbols (Relative strength index superior to 70)
filter $=\operatorname{rsi}(14)>70$;

1.5. Add columns to a dynamic watch list

You can add column to a dynamic watch list, the watch list grid will shows you these columns with their values for each symbol.
To add a column, use the function 'AddColumn' or select an already created column.

Example:
filter $=$ rsi $(14)>70$;
AddColumn("RSI", rsi(14));

This will create a column named 'RSI' that will contain the value returned by the formula rsi (14).

1.6. To update a watch list

To update a watch-list:
Select the 'watch-lists' tab in the 'Watch-list' form, select a 'watch-list', then click on the button 'Update'.

1.7. Watch lists grid colors

The grid line color is white when the symbol for this line is up to date. (The last quote date corresponds to the current date). The line color changes depending on the date difference between the last quote date and the current date.

1.8. Watch lists Settings

To update settings:
Select the 'Config' tab in the 'Watch list' form.

You can specify whether the watch list performs update automatically or not.

1.9. Switch between watch lists

To change the current watch list, right click on the grid. Select 'Static watch list' or 'Dynamic watch list' then select on a watch list.

1.10. Sort Column

The last grid's column contains Pre-Calculated values.
Right click on the grid then select 'Sort'; choose the item you want to use for this column.
Example of use: Select the item 'Distance from support' to see the distance between the last symbol quote and the support you have drawn for this symbol (if any).

HISSE_INDEX	0,0454545454545454	
\#RSSDIVIDEND	0	
Refresh		umérique 8868331791551
80. Sort		date of last quote
8 Static Watchlist		date of first quote date
D) Dynamic Watchlist	-	number of quotes
		last day volume
_COMPOSITE 5301959221	0	эverage volume for last 5 days
_NEWHIGH30	1,008	me for last 10 days
_OLFA	0	
_SUP	-0,018	ent
-SUPTO 40	-0,031	average volume for last 60 days
_SUP40	-0,012	last price change
_TEST	-0,018	price change for one day prior
"A.Z	-0,004	price change for last 5 days
A	0	price change for last 10 days
-	0	price change for last 30 days

1.2.6.5 Script Manager

1. Script Manager

1.1. Introduction

The script manager is a tool that let you write, update and manage your scripts.
Scripts are used to perform tasks and to control application behavior.
Scripts use CSharp or JScript.Net as programming languages.

1.2. Create a new Script

In 'Tools' menu, click on 'Script Editor'. Click then on 'File', then 'New'. Type a file name, and then click on 'OK'. CTRL+SPACE shortcut shows you the available functions and variables.

Script Example:

```
var a = 2;
var i : int = 0;
var chart : Chart = Charts.GetSelectedChart();
for(i=0;i<1000;i++)
{
    chart.ScrollBarIndex = i;
    App.Sleep(30);
}
```


1.3. Open an existing script

To open an existing script in the 'Script Manager', click on 'File', then click on 'Open' and then select a file; a new tab will appears.

1.4. Execute a script

To compile and execute a script within the 'Script Manager', select the script you want to execute then click on 'Execute' in the menu bar

1.2.6.6 Widget Panel

1. Widget Panel

1.1. Introduction

The widget panel is a container where you can add application object shortcuts or widgets. You can drag and drop objects like a pane formula, a trading system, a composite... to a widget panel.
You can also add widgets or .Net controls to the 'Widget Panel'.

1.2. Manage panels

Tools -> Widget Panel
In the 'Widget Panel' form, click on 'Menu' then click on 'Add panel' to create a new panel.

Widget Panel
New Panel
Remove Panel
Create ShortCut Add Widget

To rename a panel, double click on its name as shown below, then type a new name.

1.3. Create a shortcut

Click on 'Menu' then select 'Create Shortcut'

Select an item type
Check the check box if you want to get a shortcut for an existing item, otherwise you will create a shortcut for a new item
Follow the instructions, then click on 'Finish'

A shortcut will appears on your panel

1.4. Add a widget

You can add a widget or .Net control.

Click on 'Menu' then select 'Add Widget'.
Select the control you would like to add then click on 'Finish'.

1.5. Drag \& Drop

You can create a shortcut directly in your widget panel by dragging and dropping objects.
Example:
Create a chart then click on a time-series line or bar within that chart, drag \& drop it to a widget panel, a shortcut will appears inside this panel.

1.6. Panel Menu

Right click on the panel to make the panel menu appears.

```
Create a new panel for the selected items
Add Shortcut
Add Widget
New name for selected items
Arrange all
Arrange selected items
Remove everything
Remove selected items
Select all
Select shortcuts
Select widgets
```

This menu contains the following options:

- Create new panel for the selected items
- Add shortcut
- Add widget
- Assign a new name for the selected items
- Arrange all the items
- Arrange the selected items
- Remove all the items
- Remove the selected items
- Select everything
- Select only shortcuts
- Select only widgets

1.7. Shortcut and Controls Menu

Click on the Red Cross to remove this item.
Click on the arrow icon to drag this object, you can drag it to another panel or to a chart pane if the shortcut you are selecting is a formula.

Edit a shortcut name by clicking on its name.
Resize a shortcut by clicking on the blue line.
Right click on shortcut to make a menu appears.

Example: the menu of a trading system shortcut

| Default DoubleClick Method |
| :--- | :--- |
| Edit Trading System |
| Simulate Trading System |
| Optimize Trading System |
| Display items that can used for Drag\&Drop |
| Create Copy |

1.2.6.7 Sharing Server

1.Sharing Server

1.1. Introduction

All the data used in the application except the databases, can be shared.
You can share and upload trading systems, list of rules, watch lists... and download others users items.
The sharing server is the place where you can search, comment, rate other users items.
The website we have developed is a combination of a sharing server and a social network.
You can communicate with others users, create and join groups, discuss about your favorite subjects, monitor which objects or items others users are downloading or uploading, download your favorite items, search for the most rated items...

1.2. Sharing Website

Sharing website benefits:

- See what others users are uploading and downloading
- Search for specific objects
- Create alerts and be informed when new objects that meet your criteria are uploaded
- Review, rate and report shared objects
- Send messages to others members
- Create and join groups
- Discuss with other users about your favorite topics.

1.3. Share an object

- Open the 'Share Items' form (Tools -> sharing server)
- Click on the 'Share' button at the top
- Select the item type
- Select an item, then click on the 'Share selected item' button, which is located on the right
- Read the guidelines
- Update the description if necessary
- Click on 'Share'

It is important that you follow the guidelines, because any shared object that does not meet the guidelines will be deleted.

1.4. Download an object

- Open the 'Share Items' form (Tools -> sharing server)
- Click on the 'Download' button at the top
- Select the item type
- Select the item that you want to download, then click on the 'Download' button, which is located on the right
- The 'Status' column shows updates about the downloading process
- Once the object is downloaded, the 'Save an item' dialog will appear
- Select a name and a category (not necessary) for this object, then click on 'Save'

Now, you can use this object in your application

1.5. Bookmarks

In the download panel and in the panel "My Lists", click on "Bookmarks" to see all the objects that you have bookmarked.

1.7. Sharing server website

QuantShare

1.2.6.8 Divers

1. Divers

1.1. Excel

You can open an excel form within your application. To do so, click on 'Divers' menu then on 'Excel'.

1.2. Internet explorer

You can open an internet explorer form within your application. To do so, click on 'Divers' menu then on 'IExplorer'.

1.3. Output

Output form is a small form that displays text in a text-box.
You can add text to this form using the .Net function 'App.AddToOutput', or the QuantShare function: 'Output'.

1.4. Output list

Output form is a small form that displays text in a grid.
You can add text to this form using the .Net function 'App.AddToOutputList', or the QuantShare function: 'OutputList'.

1.2.6.9 Data

1.2.6.9.1 ASCII Importer

1.ASCII Importer

1.1. Introduction

The ASCII Importer is used to parse text or CSV files and include the parsed content into the application's databases. The ASCII imported has many settings that let you import any kind of data into quotes or custom databases.
N.B. the downloader plug-in use the ASCII Importer engine to parse the downloaded data.

1.2. Import Text or CSV data

To import data into the application's databases, click on 'Data' in the menu, then select 'ASCII Import'.
Once the import form opens, select one or many files by clicking on 'Pick files'.
If there are no reference to symbols in your files then you have to associate each file with a symbol name. To do so, just select a file in the list box, then type in a symbol name in the text box nearby the button 'Update symbol name', click on that button to associate a symbol to the file.

Note that you do not have to do that if there are references to symbols in your files content.
Click on 'Next' to go to the next screen. This screen let you define how to parse the content of your files, extract dates, symbols, execute script before or after parsing, associate symbols to groups, markets...

Let us take an example; we are going to show you how to parse the current lines:
A;01/12/08;12.2;13.3;11.5;12.1;1200
A;01/13/08;12.2;13.3;11.5;12.1;1200
A;01/14/08;12.2;13.3;11.5;12.1;1200
First, we have to define the separator, in this case its ';'.
We do not need to escape any lines.
We have to choose '/' as a separator for dates.
Since the date format is Month/Day/Year, we then choose MDY as 'Date type'.
Now we are going to create columns by clicking on the button 'Add Column'; we need to create seven columns. For each column, we select 'Quotes' as database.
The first column field will be 'Symbol', the second one 'Date', the third 'Open', the forth 'High', the fifth 'Low', the seventh 'Close', the eighth 'Volume'.

Click on 'Next' to go to the 'Input \& Output' panel. You will get a sample of your files content as well as a sample of the parsed content.
You have to click on 'Database->Field' items to see what the output will look like.
Click again on 'Next', so that the application can parse your files. After parsing the data, you will get the number of errors if any, the number of symbols that will be added... If during the parsing the engine finds errors, go back to the previous panel and correct the errors; if there are no errors then click on 'Next' to start the importing process.

1.3. Columns

The columns are used to parse the content of the files. Look at the 'Import Text or CSV data' paragraph for an example.

Column	Database	Field	Default	R	슷
Column 1	Quotes	Ticker		*	
Column 2	Quotes	Date		(2)	
Column 3	Quotes	Open		园	
Column 4	Quotes	High		(2)	
Column 5	Quotes	Low		-	
Column 6	Quotes	Close		(2)	
-mamm 7	numban	Unla cmm		(10)	,

Click on the Red Cross to remove a column.
You can associate a column to a quote or a custom database; double click on the cells that belong to the 'Database' column to see the available databases.
You can set 'Skip' as a field to skip the current column.

1.4. Import Settings

- Automatically add new symbols: Add the new symbols the parser finds.
- "Disable 'Associate new symbols to ...'": Make sure symbols will not be associated with any market, industry, group or index.
- "Replace data if same date": Override the existing data if data of the same date is found
- "Remove old data from database if exists": Before parsing, remove all the available content for the symbols that are going to be used in the import process.
- "Continue parsing even if there are errors": Continue the parsing process even if there are errors.
- "Text Qualifiers": Text between text qualifiers is treated as a single element.

Example: (comma as separator and double quotes as text qualifiers)
12,"12,5" -> element 1: (12) and element 2: $(12,5)$.
If we haven't specified text qualifiers, we would have: element1 : (12), element 2: ("12) and element 3: (5")

1.5. Advanced Date Format

In the 'ASCII Import' form, set 'Data type' to custom.

The date format is defined as: $[\mathrm{Y}] /[\mathrm{M}] /[\mathrm{D}][\mathrm{h}]:[\mathrm{m}]:[\mathrm{s}]:[\mathrm{i}]$
[Y]: year with four digits, example: 2008.
\{Y\}: year with two digits, example: 08.
[M]: month
[D]: date
[h]: hour
[m]: minute
[s]: second
[i]: milliseconds
If the date you want to parse if for example: 12012002 20:10, then set the date format to [D] [M] [Y] [h]:[m].

Exclude button:

Exclude keywords from a date.
Example: If your date is "Monday 12/01/2004", before parsing this date, you should get rid of the word 'Monday'. To do so, click on 'Exclude button' and insert the word 'Monday'.

Replace button:
Replace a keyword with another one.
Example: If your date is "2001M1" and M1 means January. You should click on replace button, and then click on 'Add row'. In that row, you have to type 'M1' under the 'old' column and type '/01/01' under the 'new column'. The date value will be "2001/01/01".

Replace
Replace a keyword in the date format by another one.
Keyword is case sensitive.
Example: for a date format like this : 2001 M 1 where M means month.
We need to replace M1 by /01/01 (January), M2 by 02/01
We will get something like this 2001/01/01 for 2001M1

Old	New	Re...
M1	$01 / 01$	

Add Row

1.6. Pre-Parsing Script

Pre-Parsing Script is used to modify content before parsing begins.

Example:

Your content looks like this:
A;01/01/2008;A was upgraded by JP Morgan
B;01/01/2008;B was upgraded by JP Morgan
C;02/01/2008;C was downgraded by JP Morgan
D;01/01/2008;D was upgraded by JP Morgan
You want to create a column that contains data indicating whether the stock was downgraded or upgraded.

First, we should create four columns; set the databases and fields.
Now click on "Pre-Script" button.
At any moment you can press on 'CTRL+SPACE' to see the available variables.
In the Pre-Parsing script, we have one variable: "Content".
"Content" is of type "PreScript"
"Content" contains the content of each row or line. It also contains two functions:

AddRow: Add a new row or line. You must pass the elements to be added as parameters. The number of elements must be equal to the number of elements in the orginal content. There are three elements in our example.
Example of how to use "AddRow":
Content.AddRow("GOOG","01/01/2008","GOOG was upgraded then downgraded");

GetURLORFileName: Gets the URL of file name of the content we are going to parse.

Each row contains two variables: 'Data' and 'IslgnoreLine'
"Data" is an array of string: Contains the parsed line data. In our example: (for line number 1) Data[0] contains ' A ', Data[1] contains '01/01/2008'...
"IslgnoreLine" is a Boolean: Specify whether to accept or ignore the current line or row.
The Pre-Script is executed for each file or document.
In our example, we want to check if the column number three (referenced by Data[2] -arrays start with the index zero-) contains the word 'Upgraded'.

Here is the script:

```
for(var i:int = 0;i<Content.Rows.Length;i++)
{
    if(Content.Rows[i].Data[2].Contains("Upgraded"))
    {
        Content.Rows[i].Data[3] = "1";
    }
    else
    {
        Content.Rows[i].Data[3] = "0";
    }
}
```

The fourth column value is ' 1 ' if the stock is upgraded, otherwise its value is ' 0 '.
You can remove the 'else' statement in the script and set a default value of ' 0 ' in the fourth column.

1.7. Post-Parsing Script

Post-Parsing Script is used to modify parsed content.
Example of usage: Look at the parsed symbol quotes and correct bad ticks.

The Post-Parsing Script contains one variable: "Data"
"Data" is of type "PostScript"
"Data" contains the parsed content for each date.

Each row contains two variables:
Date: A date
Data: An array of objects (could be numeric 'double' or 'text') for the date referenced by the variable 'Date' IslgnoreLine: Specify whether to ignore the current row or not.

The Post-Script is executed for each symbol.

If your columns are defined like this:
Column 1: Symbol
Column 2: Date
Column 4: Open
Column 5: High
Column 6: Low
Column 7: Close
Column 8: Volume

In addition, your file content is:
A;13/12/2008;11;11;11;11;100
A;12/12/2008;12;12;12;12;200

Then variable 'Data' (of type PostScript) will contain two rows.
In the first row, the variable 'Date' will have '13/12/2008' as value and the variable 'Data' will be an array.
Data[0] = 11
Data[1] = 11
Data[2] = 11
Data[3] = 11
Data[4] = 100

1.2.6.9.2 Downloader

1. Downloader

The downloader plug-in downloads CSV, text, excel, compressed (ZIP), or RSS data from any website, parses it, transforms it, and then imports it to your databases.
N.B. the downloader plug-in uses the ASCII Importer engine to parse the downloaded data.

1.1. Introduction

Each download item is associated with one or sereral URLs, and each URL can contain any number of fields.

If for example you want to import stock quotes for the server 'www.example.com', and the complete URL to get stock quotes for the symbol "goog" is "www.example.com/quotes.php?id=goog".
In addition, you have to login using the following URL
"http://www.example.com/login.php?user=xx\&pass=yy" before being able to download any quotes.

Given this example, your download item, should contains two URL:
1 - "http://www.example.com/login.php"
2 - "http://www.example.com/quotes.php"

The first URL should contain two fields, one for the login and another one for the password. The second URL should contain a field named 'id', you have to set this field's type to 'Symbol'.

1.2. Create a download item

Open the download manager by clicking on 'Download' in the menu bar, then 'Download Manager'. Click on 'Add', in the download manager.

1.2.1. Download Steps

'Download Steps' are the URLs that the downloader must visit in order to download your content. Click on 'Add URL' to add a new download step.

1.2.2. Fields

You can associate one or more fields to each 'Download Step' or URL.
First, add a new URL, and then click on the button 'Fields' under the 'Fields' column. Fields are used as parameters.

Post Data		Add Field	Remove Selected Field	Close
Field	Value		Type	
s	GOOG		Symbol	\square

To add new fields, click on 'Add Field'.
To remove a field, select one, and then click on 'Remove Selected Field'.
To close the fields form, click on 'Close'.

When adding a field, you should specify four things:

- Field name: The name that will be used in the URL
- Field value: The value that will be used in testing and in static fields like the login and password fields; the value of a dynamic field is automatically updated in the downloading process.
- Field Type: The type associated with the field.
- Field visibility: Indicate whether to display the field as a URL parameter or not. Check the box to hide the field. You still can use the fields data (please refer to how to use brackets).

Example:
URL: "www.example.com/test.php?a=2"
Field Name: b
Field Value: test
Field Type: Custom

In the testing process, the software will use this URL: www.example.com/test.php?a=2\&b=test.
In the downloading process, if you put the following values (EX1 and EX2) in the text box inside the tab associated with the field " b ":

The downloader will use theses URLs to download your content:
"www.example.com/test.php?a=2\&b=EX1"
"www.example.com/test.php?a=2\&b=EX2"

How to use brackets:

In order to use a field inside a URL you should insert the field name inside brackets.
Let us take the last example: "www.example.com".

You can display the value "2" that corresponds to the field "a", using the following text: [a]
Example: "www.example.com/test_[a].php".

Keywords:

[DATE]: displays the date
[SYMBOL]: displays the symbol
[field_name]: displays any field value

1.2.3. Ordering URLs

Open the 'Update Download Item' form.
Click on the icon within the 'Up' column.

1.2.4. CSV, Excel, RSS, ZIP

After you have added the URL, specified the fields, and depending on the content you are parsing, click on the cell within the 'Parser' column and select the appropriate content type.
Click on 'Parser' to open the 'Parser' form.
This form will upload some content to help you fill in the appropriate parsing settings.
Look at the 'ASCII Import' plug-in for more information.

Excel: Download excel file and parse the content of every sheet.
RSS: Download RSS feed then transform it to CSV.
Zip: Download a compressed archive and parse every file included inside the archive.

1.2.5. Settings

Click on the "Settings" cell to open the settings form.
Within this form you can specify:
Whether to submit the fields data with a POST or GET method.
Whether to execute the URL-Script once or for each combination of fields.
For more information on the URL-Script, please visit the appropriate section.

The URL-Script is executed before downloading any data. This script lets you define dynamic URLs. It is executed for each combination of fields, which means that if for example you are using 10 symbols and a custom field with 2 custom data, this script will be executed 20 times, once for each "Symbol - Custom data" combination. If you check the above element (execute the URL-Script once), then the script will be executed only one time. You will have to define the URLs inside this script.

1.2.6 Test

In the 'Update Download Item' form, there is a button named 'Test'.
Click on this button to see how the application will browse your URLs to import your content.
This tool is designed to help you find and correct possible problems.

1.2.7. Detect

In the 'Update Download Item' form, there is a button named 'Detect'. Click on this button to open a browser page. Visit your content pages URLs to look for all the form fields names. This tool is designed to help you create your download item.

1.3. Download Settings

1.3.3. Settings

- Maximum number of download threads to allow: specify how many concurrent threads to use during the downloading process.
- This item should download data every: You specify here a number of days for your download item, and the application will alert you each time a download item needs to be run. A column named 'Need a run', in the 'Download Manager' form, tells you if the download item needs a run or not.
- Number of seconds to wait between requests
- Database to use for the 'last symbol date': Use this option to download only missing quotes or data. Select a database so the downloader can grab the last date from the symbol data in the specified database.

1.3.4. Proxies

Specify a list of proxy URLs to use when downloading data.
Each line represents a proxy URL.

1.3.5. Symbol translation table

Translate symbols before downloading data.
Change the symbol name in the URL that will be used to download data.
Each line represents the source and destination symbol pair.

1.3.6. Offset dates

The "offset dates" button let you offset dates components.
If for example yahoo wants the month component to vary from 0 to 11,0 means January and 11 means December, then in the 'Offset Dates', set the 'Offset Month' numeric box to one.

1.4. Using the downloader

To open the downloader form, select "Download -> Download Manager".
Select a download item then click on "Open".
Click on the button "Start" to begin the downloading process.
The progress column shows you the download progression and each time a download is complete, the corresponding row is unchecked.

In the "download items" grid, the "Last" column indicates the number of days since the last execution of the corresponding item.

1.4.1. Symbols

If you have specified a symbol field in the 'Update Download Item' form, then a 'Symbols' tab will appear.
Select the symbols you would like to download.

1.4.2. Dates

If you have specified a Date field in the 'Update Download Item' form, then the 'Dates' tab will appears.

In this tab, select the start date, the end date, the format, the interval, then click on 'Save'.
The 'Dates' text box, will show you the dates that are going to be used in the downloading.

Format text box:
[Y]: year, example: 2008
[Y2]: year, example: 08
[M]: month, example: 01 or 10
[M2]: month, example: 1 (without the 0) or 10
[D]: day, example: 01 or 22
[D2]: day, example: 1 (without the 0) or 22

In 'Update Download Item' form, you can also specify dates component within the URL.
Example for yahoo:
http://ichart.finance.yahoo.com/table.csv?a=[2M2]\&b=[2D2]\&c=[2Y]\&d=[M2]\&e=[D2]\&f=[Y]\&g=d\&ignore=.csv

Dates format are a little bit different here:
[Y$],[\mathrm{Y} 2],[\mathrm{M}],[\mathrm{M} 2],[\mathrm{D}],[\mathrm{D} 2]$ refers to first date (FROM), while [2Y], [2Y2], [2M], [2M2], [2D], [2D2] refers to second date (TO).

1.4.3. Start and end dates

If you have specified date components within URLs, a 'Start \& End Dates' tab will appears in the 'Download Data' form.

Select 'Last symbol data' to download only missing quotes or data.
The database that will be used to get the last downloaded date for a particular symbol can be set in the 'Download Settings' form.

1.4.4. Custom fields

If you have specified a custom field in the 'Update Download Item' form, then a tab containing a text box will appear. Each line inside this text box corresponds to a value.

1.5. Downloader Scripts

1.5.1. URL-Script

If you need to dynamically specify the URL to download then you have to use the URL-Script to programmatically specify what URLs or URLs paths to use.
A URL path is a sequence of URLs. It is used if for example before loading a URL, the website requires that you load some other pages, login...

A URL is added using the following function:
Functions.AddURL

A URL path is added using the following functions:
Functions.CreateURLPath: creates an URL path.
AddURL: adds an URL to an URL path.
Functions.AddURLPath: adds an URL path.

The (Functions.Net) class contains different methods to download, extract and parse HTML documents.

1.5.2. Summary

The engine will look for URLs specified in the URL-Script; it downloads them and split the content using the parser settings. It then passes the split content to the Pre-Script. This script allows you to modify the provided data. Finally the content is parsed and before added to the quotes or custom databases, it is passed to the Post-Script.

URL-Scrip \dagger

1.2.6.9.3 Data Viewer

1. Data Viewer

1.1. Introduction

The data viewer lets you display database data inside a grid.

1.2. Show database data

To open the 'database data' form; select the 'Tools' menu then click on 'Databases Data'.
To display database data, you need to select a database by selecting one in the 'Database' combo box, then click on the icon next to Filters and select for which symbols you want to display data. If you select 'Selected chart', then the grid content will be automatically updated each time the select chart symbol changes.

A	21/11/2008 16:00:00	TRADE NEWS: Agilent Technologies Electronic System			
A	21/11/2008 01:53:59	[$\$$ \$] Citi, Bof	s Best of the Requests: A AAPL PKX (Tra		
A	Selected chartAll chartsAll				
A			P, Alcoa Lead Plunge Into 'Free Fall' (at T		
A			5: Agilent Technologies Announces Indusl		
A			frof Andent 90 ,WIMAX, Semi-conductors chap a Max, semi-conductors		
A					
A			hologies shares fall on downgrade (AP)		
\leqslant					
Filters:			W data on chart		
䛚 Script			ad Manager Optimizer		
9 US	Ok				

Click on the watch icon, depending on the period of time you select, the plug-in will only display data that meets the time constraint.

1.3. Filter database lines

You can filter database data, by typing keywords in the 'Search' text box and by selecting a database field.

1.4. Data Viewer Settings

Each grid line has a different color depending on the age of the data. You can choose the colors by selecting the 'Settings' tab in the 'Data Viewer' form.

1.5. Plot data on the chart

To plot data on a chart, click on 'Show data on chart' in the 'Data Viewer' form.

Click on the chart rectangle or circle to display information.
You can control how to display data on the chart in the 'Settings' tab panel.

1.2.6.10 Analysis

1.2.6.10.1 Rules Manager

1. Rules Manager

1.1. Introduction

The Rules manager allows you to manage and create easily and quickly as many rules as you want.
A rule is a formula that can be used in charting, simulation...
A list of rules is a list that contains one or many rules.
A rule can have one or several iterations.

You can create undefined variables within a rules and specify the start, the end and the increment value of these variables.
This process makes it easy to create hundreds of rules.
List of rules can be used in many situations.

Examples:

You can back-test rules to see how each rule performs.
You can use the optimizer, and run a genetic algorithm process on a list of rules to see which combination of rules performs best.
When creating a trading system, you can define already created rules as buy, sell, and short or cover entries.

1.2. Create a rule

Open the rule manager (Analysis -> Rules Manager)
Click on 'Add' to create a list of rules
Select the list of rules you have just created.

Here is how to create a rule.
If you rule is something like $x>y$ or $x=y$, you just have to type the first component in the first input box, and the second one in the second input box.

Example: rsi $(14)>50$
Rule Definition
Name: rsi
() Create rule
rsi(14)

50

A red flag means that there is an error in the formula, if everything is ok then the red drag will turn into a green one.

In the combo box you can select NA, and then type directly the formula in the first input

When you click on the icon next to the red flag, a small form will appear.
This form contains all functions definitions and parameters, use it to select the function you would like to include in your formula then click on OK.

The grid below the inputs boxes is used to transform one rule into several ones.

Example: instead of specifying "rsi (14) > 50", you can type "rsi $(14)>\mathrm{a}$ ", a line in the grid will appear.

Type in the minimum, the maximum and the step value
In this example, we set a min of 50, a max of 90 and a step of 10 , and this rule became a five iterations rule.

1.3. Rules Manager

Open the rule manager (Analysis -> Rules Manager)

- Add: Create a list of rules, a dialog box will show up, you just have to enter a name and click on OK
- Remove: Select a list of rules from the list of rules List then click on "Remove" to delete this list
- Analyze: Analyze a list of rules (See below)
- Mass Rules: Create mass rules (See below)
- Close: Close the 'Rules Manager' form

1.4. Drag and drop

You can drag and drop rules or list of rules by selecting a rule or a list of rules and dragging it to the clipboard.
From the clipboard, you can drag the posted rules by clicking on 'copy'.

1.5. Mass Rules

'Mass rules' is a tool that will help you create many rules very quickly using masks.

Click on 'Mass Rules' button; a dialog box will appears.
Now you have two ways to add functions:

- Add button
- Add from time-series button

The added functions will appear on the left list.
In our example, we added two functions: Inside() and Outside()

You can now create your masks and specify variables within masks if needed.

Type for example: mask > ref(mask, a) then click on Create, and make variable "a" vary from one to 10 with one as a step. We are about now to create 20 rules (2 rules and ten iterations for each rule)

After clicking on "Create Rules", two rules will be created (with 10 iterations for each rule)

Inside() > ref(Inside(), a)
Outside() > ref(Outside(), a)

1.6. Analyze rules

Analyze rules is a tool that will let you back-test your rules one by one before using them in ranking systems, simulation, neural networks...

The rules analyzer is not limited to analyzing the performance of trading rules, it can also be used to analyze any market behavior that occur after the trading rule signal become valid.
If you are trading options, you can for example analyze which rules or combination of rules lead to a security higher volatility.

Select a list of rules then click on Analyze, the settings dialog box will appear.

1.6.1. Symbols \& Periods

Specify the symbols and the simulation period.

1.6.2. Filter

Specify upper and lower limits for a position output; every position with an output value outside these limits will be
rejected.
You can also specify limits by selecting a maximum number of standard deviation for position outputs.

1.6.3. Outputs

Outputs are formulas that the back-tester calculates when he enters a new position. Example: Performance for the next 10 bars which corresponds to the formula "perf(open, -10)"

The outputs form appears once you click on the "Select Outputs" button.

Defined outputs:
Performance, use a trailing stop: Enter a position then exit when drawdown reach -X Percent (Trailing stop)
Performance, use N-Bars stop: Enter a position then exit after X bars (N-Bars stop)
Performance, custom rule for exit + trailing stop: Enter a position then exit when drawdown reach -X Percent or when the specified rule is TRUE.
Performance, exit when rule is false: Enter a position then exit when the rule is no longer TRUE or valid.

The "Custom Output" lets you add your own advanced formula.
See (HELP: Advanced Rules; Output) for an example

1.6.4. Fixed Rule

You can specify a fixed rule that will be added to the rules to be analyzed.
Fixed rule can contain iterations.
Example:

Let us say we want to analyze theses rules:

- $\quad \operatorname{RSI}(14)>10$
- Perf (close, 10) > a, where "a" varies from two to four, with a step of two

As a fixed rule, we have:
"close > cl" , where "cl" varies from 10 to 20 with a step of 10.

You will end up with a total of " $1+(1 * 2$)" rules multiplied by 2 (fixed rules) for a total number of six rules. Here is the list of all the rules that will be analyzed:

```
close > 10 && Rsi(14) > 10
close > 10 && Perf(close, 10) > 2
close > 10 && Perf(close, 10) > 4
close > 20 && Rsi(14) > 10
close > 20 && Perf(close, 10) > 2
close > 20 && Perf(close, 10) > 4
```


1.6.5. Metrics

CSharp or JScript.Net languages are used to create metrics.

Example of metric formula:

Fitness $=$ OutputPerBar * (NbPositions >100);

Set the output to zero if the number of position generated by the rules is lower than one hundred. For each "metric formula", you can add additional metrics using the following function: Functions.AddMetric

1.6.6. Results

When analyzing rules completes, a grid containing the results appears.

Each line represents a rule or iteration.

Columns abbreviations:

- Out PB: Average position outputs per bar
- Output: Average position outputs
- Bars held: Average number of bars per position
- Positions: Number of positions
- PP: Percentage of positive position output
- Best: Best position output
- Work: Worst position output
- SDV: Standard deviation of position outputs

You can easily create new list of rules from the analyzed rules.

On the "Rules" column click on the right mouse button to make a menu appears.

Search:

Search for rules that contain a specific keyword, found rules will be checked.

Graph per Output:
Displays a chart that plots the analyzer results per output. The average of all rule outputs for each output type will be calculated.

Info: XAxis relerences the outputs you used

Select a variable:

Group results per variable:
Displays a chart that plots the analyzer results per variable value. The average of all rule outputs for each variable value will be calculated.

1.2.6.10.2 Ranking System Manager

1. Ranking System Manager

1.1. Introduction

A Ranking System takes a list of symbols and assigns a value to each symbol within this list. Generally, a symbol value ranges from zero to 100.

1.2. Create a ranking system

To create a ranking system, open the ranking system manager, Analysis->Ranking System Manager, click on the 'Add' button and then type a name.
Now select the ranking system you have just created and start adding formulas and nodes.

Add parent node: Add a top node
Add node: Add a node within the selected node
Add formula: Add a formula within the selected node

Nodes and formula have in common: the name and the weight properties.
Right click on a node or formula to open a menu.

You can assign a different weight to each node or formula to give them more or less importance.
Formulas have some others properties:

- Formula: a rule or formula you want to use. The red flag nears the formula input box and the circle in the tree view indicates whether the formula is correct (green) or incorrect (red).
- Factor: multiply the formula result by the provided value
- Description: the description of the formula
- Maximum and minimum levels: The maximum and minimum value the formula can have, if a formula return 110 while the maximum level is set to 100 , then the application will use a value of 100 .

Auto update factor: If this item is checked, the application will decide which factor to apply to the formula. The chosen value is not always accurate, so it is better to update the 'factor' field manually. Generally if the formula return values between 0 and 100, for example an indicator like the relative strength index (rsi), then a factor of one should be used; if the formula return either zero or one ($E x$: close >20), then a factor of 100 should be used.

Calculation example:

Let us make some calculation using this above ranking system as an example.
As you can see, this ranking system contains two nodes.
The first node contains one node which contains two formulas.
The second node contains one formula.

The calculation begins with the formulas.

Formula: rsi (14)

Bars	1	2	3	4	5
Values	45	46	50	52	54

Formula: rsi (7)

Bars	1	2	3	4	5
Values	20	23	29	20	19

Formula: rsi (21)

Bars	1	2	3	4	5
Values	60	61	60	50	45

The values equals the rsi value multiplied by the factor value of the formula, we took here a factor value of one.
Now the software will calculate the parent node of theses formulas.
For each bar, the software takes the value of each node's children (formula or node), multiply it by the formula or node's weight, add all the values, and then divide the result by the sum of the children's weights.

For the bar number one and for the node 'Node1-1'
$S=$ sum of children's weights: $10+10=20$
rsi(14) value $=45 * 10=450$
rsi(7) value $=20 * 10=200$
rsi(14) value $+\mathrm{rsi}(7)$ value $=450+200=650$
'Node $1-1$ ' value = $650 / 20=32.5$.

Node: Node1-1

Bars	1	2	3	4	5
Values	32.5	34.5	39.5	36	36.5

We make the same calculation for the 'Node2'.
Because the 'Node2' has only one child, it will get the same values as its child.

Node: Node2

Bars	1	2	3	4	5
Values	60	61	60	50	45

Node: Node1 (same as Node1 - 1)

Bars	1	2	3	4	5
Values	32.5	34.5	39.5	36	36.5

Now, the software will calculate the 'Top Node' (Ranking system values) which has two children (Node1 and Node2). The same calculation as described above applies.
Top Node $=(($ Node1 $*$ Node1_weight $)+($ Node2 $*$ Node2_weight $)) /($ Node1_weight + Node2_weight $)$.

Therefore, for the first bar it will be:
Top Node bar1 $=((32.5 * 100)+(60 * 50)) /(100+50)$

Top Node: (Ranking system values)

Bars	1	2	3	4	5
Values	41.67	43.33	46.33	40.67	39.33

NB:
If you want to ignore a node or formula you can uncheck it, only checked nodes are evaluated.

1.3. Create a ranking system from a list of rules

Select a node, right click on it and then click on 'Add rules from list of rules'.
You just have to select a list of rules then your ranking system will be populated with these rules.

1.4. Analyze Ranking System

To analyze or back-test a ranking system, click on 'Analyze Ranking System'.
The 'Analyze Ranking System Settings' form will appears, update settings then click on 'Analyze'.

The ranking system analyzer settings are the same as in the 'Analyze List of Rules Settings'. However, there are two more fields:

- Number of buckets: Let you specify the number of buckets you want to create Let us say, our ranking system returns values from zero to 100 , if we specify 10 as the number of buckets, then the application will back-test or analyze ten systems.
The first system will be the one that have values between 0 and 10, the next one with values between ten and 20... (If you choose Normal Ranking as a Ranking Calculation)
- Ranking calculation:

Same number of positions in each bucket: The boundary between states are choosen so that each state is assigned the same number of positions.

Normal Ranking: The boundary between states are choosen so all the states have the same size.

Example: number of buckets $=10$; bucket 1 will contains all the positions that have a rank between zero and ten, bucket 2 will contains all the positions that have a rank between ten and twenty and so on.

Ranking on each rebalance date: For each rebalance period, calculate the values, sort symbols by their value and assign a rank to each symbol (distance between the ranks will be equal).
Example: For a specific date, we have four symbols with the following ranks: 11, 10, 20, and 90; we first sort these symbols then assign a new rank to each one, we will end up with the following new ranks: $0,25,50$, and 100, where symbol number one have a rank of 25 , symbol number two have a rank of 0 and so on. (The trading system back-tester uses this type of ranking)

- Rebalance every: The analyzer starts at the start date and advance by a number of days as specified in this field. For each period, a rebalance is done (old positions are closed and new ones are taken).
Unlike the 'Rules Analyzer', which rebalance or taking a new position occur only after the old position is closed, the 'Ranking System Analyzer' takes new positions after a specific number of days; this position is then assigned to a bucket depending on the value of the ranking system at this date.

1.5. Analyze Ranking System Report

The 'Analyze Ranking System Report' contains all the back-testing results related to your ranking system.

Node Formula : GetData("_valroettm" , "_valroettm", LastData)

Resuls	Select an output:	\square Time-Series \square Show ordy the last bucket	
		Buy then sell atter 15 bars	\checkmark
Settings	Select a vaiable	Anrual Return	\checkmark

1.6. Analyze Nodes

Instead of analyzing a ranking system, you can also analyze each node of a ranking system separately; this will let you know which nodes perform well.
To analyze ranking system nodes, select a ranking system then click on 'Analyze Nodes'.

1.7. Analyze Nodes Report

The 'Analyze Nodes Report' contains all the back-testing results related to your ranking system nodes.

Each line represents a node, as you can see in the picture below.

all Analyze Nodes					$\square \square$	X
Stopped		41 s				
	Node Formula	Buy then sell after 15 bars (Last Bucket)				\wedge
		Annual Re...	Nb Tra...	Empty	Buckets	
\square	GetData("_peexclxortm", "_peexclxortm", LastData)	16,0078	160	0		
\square	GetData("_peg", "_peg', LastData]	3,993	159	0	- \square^{-19}	
\square	GetData['_pr2bookq", "_pr2bookq", LastData]	20,9159	160	0		
\square	GetData["_pr2cashflq", '_pr2cashflq', LastData]	23,0279	159	0		
\square	GetData['_pr2salesq", "_pr2salesq", LastData]	$-2,5724$	160	0		
\square	GetData["_pr2tanbkq", "_pr2tanbkq", LastData)	16,1191	162	0		
\square	GetD ata["_pro2salesincdebt", "_prc2salesincdebt", Last...	$-21,0064$	159	0	-	
\square	GetData("_surprise\%q1", "_surprise\%q1", LastData)	40,4414	159	0		
\square	GetData["_swift", "_swift', LastData]	21,5037	159	0		
\square	GetData("_tf-new2", "_tf-new2', LastData)	17,9683	159	0		
\square		15. 2 AF	1 Cn	ก		\checkmark
					Close	

Click on the charts to display additional back-testing information.

1.8. Ranking System \& Formulas

You can access a ranking system from the QuantShare language by using this function:
Ranking("ranking system category", "ranking system name");
This function will return the ranking system value of the current symbol. You can use it to create rules and then apply them to the rules analyzer, ranking system analyzer (Ranking system based on another ranking system), trading systems and prediction models...

1.2.6.10.3 Simulator

1.Simulator

1.1. Introduction

The Simulator lets you test strategies or trading systems under historical market conditions to determine whether certain scenarios would have worked well in the past. The idea is that if a trading strategy would have performed well previously, it may be worth considering today.

A trading system includes:

- Buy rules
- Sell rules
- Short rules
- Cover rules
- Capital settings
- Stops
- Money management rules
- Long and short ranking systems

1.2. Create a Trading System

Open the 'Simulator' (Analysis->Simulator)

- Click on 'New'
- Set entries and exits
- Set the capital settings
- Set stops
- Set money management rules
- Set symbols that are going to be used in this trading system
- Set a ranking system

Finally, click on 'Create trading system'.

1.4. Entries, Exits and Stops

```
Buy using limit order at tomorow
    at the price of: close * 1.01
O (rsi(14)) > (70)
    add rule
\(O(\) rsi \((14))>(70)\)
\# add rule
```


Short at open of tomorow

```
Sell at open of tomorow + 1
```

O $($ rsi $(14))<(40)$
\# add rule

Cover at open of tomorow

Stop loss (Percent) at 20%, re-enter after 10 bars
解 Trailling stop (Percent) at 10%, re-enter after 10 bars
चु Profit stop (Percent) at 10%, re-enter after 10 bars
F马 N -Bar stop (Percent) at 10%, re-enter after 10 bars

System Type: specify whether to create a long, a short or a long/short trading system
Number of positions: Specify the maximum number of positions in the portfolio. You can use the advanced money management script to dynamically change the number of positions in your portfolio.
Entries and exits settings: If a label is underlined when the mouse is over it, click on the mouse left button to display a small menu. You can also update values directly using the mouse wheel.

Entries and exits rules: Click on a rule or on "add rule" to update, add, remove and manage rules.

Specify the stops to apply to the trading system by clicking on the appropriate icon:

- Maximum loss stop: Exit a position if the symbol's performance (points or percent) falls below this level
- Profit target stop: Exit a position if the symbol's performance reaches this level
- Trailing stop: Exit a position if the symbol's drawdown falls below this level
- $\quad \mathrm{N}$-bar stop: Exit a position after a specific number of bars

1.3. Capital Settings

The Capital settings include:

- Initial equity
- Periodicity: rebalance period
- Reference symbol: generally an index like the SP500
- Risk free rate
- Percent of capital to invest: Specify the percentage of capital to invest
- Activate stop immediately: If activated then when exiting a trade because of a stop, uses the stop value as the trade exit price, otherwise exit as defined in the sell or cover price and delay settings)
- Reverse entry forces exit: When checked, the back-tester will close a long position if he encounter a short signal for the same symbol and close a short position if he encounters a long signal for the same symbol.
- Reject trade if position size is higher than x times the symbol's volume for that day: tell the back-tester to enter position only if there is enough liquidity.
- Margin: a factor to specify the margin you want to allow for this trading system (A value of 2 means that the amount of money you are allowed to use within this trading system is twice your current equity value)
- Minimum shares: This is the minimum number of shares you can buy or short. (The position will not take place if the number of shares to buy or short is less that this value)
- Minimum position value: The same as 'Minimum shares', but we use here the position value or volume.
- Commissions: Brokerage commissions
- Slippage: specify the average slippage associated with each trade. (Difference between the simulated entry price and the real entry price)
- Allow penny stocks: Reject a trade or a position if the stock price is lower than 2 . Use this field only if you are trading stocks.

1.5. Money Management

See Advanced Money Management

1.6. Optimize a trading system

You can optimize a trading system using the optimizer plug－in or using the simulator optimizer．
The optimizer plug－in uses complex algorithms to find the best trading system，while the integrated simulator optimizer use bulk optimization（that is，the simulator will back－test all the possibilities）

1．7．Run or optimize a simulation

To run a simulation，first select a trading system，and then click on＂Simulation＂．
To optimize a simulation，first select a trading system，and then click on＂Optimize＂．

Optimize Simulation

1．8．Trading System Report

1．8．1 Introduction

The＂Trading System Report＂analyzes all the signals generated by the simulation and gives you a detailed report．

1．8．2 Grid

The grid control shows you the simulation basic statistics．
When using optimization，this grid shows all generated simulations，a column for each variable shows you what value were used for each simulation．

Information ：Endsmument Variablecol										
Select	Name	A．Return	Drawdown	Sharpe	P．Winners	Repot	Stoploss	op0［Var］	op1（Var）	\wedge
－	teit	5，02\％	－21，05\％	0.00	42，86\％	（1）	Ditotied	50	30	
\square	totat	13．1\％	40．61\％	0.48	408	困	Percent	50	30	
\square	teat	－3，57\％	－33，3\％	0.56	28，57\％	回	Ditabled	60	30	
\square	test	－7，16\％	－47．16\％	0.80	208	通	Percent	60	30	
\square	test	－8．09\％	45．65\％	0.82	12.5%	园	Ditskled	70	30	
\square	test	．11．98\％	57．72\％	1.09	9．09\％	园	Percent	70	30	
\square	test	6，24\％	$578 \pm$	0，45	17，24\％	回	Disabled	50	40	
\square	teit	－10．598	63．00x	0．0．60	15．15\％	国	Percent	50	40	
\square	test	10．23＊	58．18t	0.76	26.32%	國	Disabled	60	40	\checkmark
\square	tine	Cons	ecter	$0 \times$	n， 0 \％	\square	nounce	con	n	\checkmark

Double click on the＇Report＇column icon to open the report of the selected simulation．

1．8．3 Chart

Plot equity，drawdown and others time－series graphs．

Right click on the chart to open a menu．
You can create new panes，remove panes，and remove a graph from a pane．．．

To add a graph to a pane, select a time-series from the combo box as shown below then click on 'Drag' icon then drag the time-series and drop it into a chart's pane.

To plot entry and exit signals in a symbol chart, check 'Plot Entries \& Exits on chart' then select a symbol that was used in the simulation.

Summary Statistics Trades $\|$ Details

Plot Entries \& Exits on chart

The symbol chart will look like the picture below. Click on the arrows to display the position details.

1.8.4 Statistics

Capital:

Initial Capital - The size of your account before the simulation started

End Capital - The size of your account after the simulation ended

Net Profit - The profit generated by the trading system

Net Profit in Percentage - The profit generated by the trading system in percentage

Exposure - The percentage of your account that was invested for all bars

Net Risk Adjusted Return - Net profit \% divided by Exposure \%

Annual Return - Compounded annual return \%

Risk Adjusted Return - Annual return \% divided by Exposure \%

Average Profit/Loss - (Profit of winners + Loss of losers)/(number of trades)

Average Profit/Loss in Percentage - (\% Profit of winners + \% Loss of losers)/(number of trades)

Average Bars Held - sum of bars in trades / number of trades

Winners:

Total Profit - Total profit generated by winning trades

Number of Winners - The number of winning trades

Average Profit - Average profit of the winning trades

Average Profit in Percentage - Average profit of the winning trades in percentage
Average Bars Held For Winners
Max Consecutive Winner
Largest Winner

Number of Bars in Largest Winner

Losers:

Total Loss - Total loss generated by loosing trades
Number of Losers - The number of loosing trades

Average Loss - Average loss of the loosing trades

Average Loss in Percentage - Average loss of the loosing trades in percentage

Average Bars Held For Losers

Max Consecutive Loser

Largest Loser
Number of Bars in Largest Loser

Drawdown:

Maximum Trade Drawdown - The largest peak to valley decline experienced in any single trade

Maximum Trade Drawdown In percentage - The largest peak to valley decline in percentage experienced in any single trade

Maximum system drawdown in dollar - The largest peak to valley decline experienced in portfolio equity
Maximum system drawdown in percentage - The largest peak to valley decline in percentage experienced in portfolio equity

Recovery factor - Net profit divided by Maximum system drawdown
CAR/MaxDD - Compound Annual percentage return divided by Maximum system percentage drawdown
RAR/MaxDD - Risk Adjusted Return divided by Maximum system percentage drawdown

Misc:
Number of trades - The total number of trades generated by the simulation

Percent of winners - The percentage of trade's winners
Annual turnover - Example: a value of 100% means that the average holding period of a trade is one year; a value of 200% means that the average holding period of a trade is six months

Total trading costs - The sum of all the trading costs generated by the simulation

Volume activity - The sum of all the positions size generated by the simulation
Percent trading cost of volume - Total trading costs / Volume activity

Percent positive days - The percentage of positive days in the simulation equity
Percent positive months - The percentage of positive months in the simulation equity
Percent positive years - The percentage of positive years in the simulation equity

Average daily return

Average weekly return

Average monthly return

Stats:

Ulcer index - Square root of sum of squared drawdown divided by number of bars
Ulcer performance index - This indicator is used to measure the riskiness of an investment

K Ratio - A ratio that is used in the performance evaluation of an equity relative to its risk. The ratio examines the consistency of equity's return over time. Higher is better

Standard deviation - A measure of the dispersion of a set of data from its mean. The more spread apart the data, the higher the deviation. Standard deviation is calculated as the square root of variance.

Downside standard deviation - The downside standard deviation from the ordinary standard deviation insofar as the sum is restricted to those returns that are less than the mean

Sharpe ratio - The Sharpe ratio tells us whether a portfolio's returns are due to smart investment decisions or a result of excess risk, the higher the better

Sortino ratio - The Sortino ratio is similar to the Sharpe ratio, except it uses downside deviation for the denominator instead of standard deviation, the higher the better

Profit factor - Profit of winners divided by loss of losers

Payoff ratio - Ratio of average wins / average loss

Performance Vs Benchmark:

Beta - A measure of the volatility, or systematic risk, of a security or a portfolio in comparison to the market as a whole; if a stock's beta is 1.2 , it is theoretically 20% more volatile than the market.

Alpha - A measure of performance on a risk-adjusted basis, a positive alpha of 1.0 means the fund has outperformed its benchmark index by 1%. Correspondingly, a similar negative alpha would indicate an underperformance of 1%.

R Squared - The percentage, of a fund or security's movements, that can be explained by movements in a benchmark index. R-squared values range from zero to 100 . An R-squared of 100 means that all movements of a security are completely explained by movements in the index

Correlation - a statistical measure of how the security and the benchmark move in relation to each other

1.8.5 Trades

Realized trades: This window shows you the list of all realized trades.
Trades flow: This window shows you the list of all the trade's entries.

Resised tradet Thades fowl			Exit	Perf	Profit	Sharer	Pos value	Nb barn	Peif/Bar	MAE	MFE	Exit type
Ticke	Trade	Entry										
AC:	Lang	15/12/2003	23/09/2009	28845	563245	62	11956	251	0.112	K53.24\%	47.18%	Fomrla
ANXT	Long	16/0622006	$25 / 00 / 2000$	418 t	41008.008	604	1407.00	11	3.85	66338	08	Fomma
AAAGT	Long	15/12/2003	$16 / 06 / 20008$	6.884	.12t.605	105	1890.55	236	0.035	.17818	42.585	Fomula
$A^{\prime 2} \mathrm{C}$	tong	15/12/2003:	D0001/20017	73745	-1483235	2731	53029	161	$0.45{ }^{\circ}$. 55 t	53.725	Fomida

Realiced thades	Irades flow						
Ticker	Type	Date	Price	Shares	Ponition value	Feer	Exit type
AA	Sell	23009/2008	22.05005	S6.	1418555	2001	Formis
AASP	Bu\%	23/09/2008	0.24005	10147	2435,288	2005	
AAXT	5 El	2506/200\%	1,75005	804	1402005	2005	Founds
A A ${ }^{\text {at }}$	Buy	16/06/2006	300005	504	2412.005	2005	
ASAGY	Sel	16108/2000	1791005	105	1800.555	2.001	Fanili
Anct	Sel	08/01/200\%	0.75005	2791	530.298	2001	Formila
AACB	Buy	15/12/2003	15.11008	133	2009.638	2005	
ABEC	Bug	15/72/2003	1356005	158	2006895	2005	
AAASY	Buy	15/12/2003	19,03005	105	1999,15s	2.005	
AAC	Bug	15/12/2003	0.72005	2791	2009.525	2.005	
AA.	Buy	15/12/2003	31,9000s	62	1977.80s	2008	

1.8.6 Detailed trades

This control shows you a snapshot of your portfolio for any date. It displays, for each date, the portfolio statistics, the current positions, the opened positions and the closed positions.
It also shows you the orders that were created for each date, and the orders that were rejected along with the reason of the rejection.

Select a dete :		Dese	11/71/2005	Cument postiona:	Ticker	ABCE
02/11/2005 $03 / 11 / 2005$ 04/11/2005 05/11/2005 $06 / 11 / 2005$ 07/11/2005 $08 / 71 / 2005$ 09/11/2005 $10 / 11 / 2005$	\wedge	Equily	10923.37	AA AABGY AABC $A A C$ 510	Open price	15.11
		Peflomance	9238		Cunent price	24.75
		Drowdown	9.2\%		Bara held	100
		Cash	8.02		Number of thares	133
		Percert invested	99,935	Opened poitions :	Equily poition	3291,75
		Number of potrions	5		Type	Long
12/1/2005 $13 / 11 / 2005$ 14/71/2005 15/71/2005	v				Msamum dasodown	-28,59\%
					Comminiom poid	2
					Retuin in percentage	63.64%
Log:				Closed position:	Retum	1260,12
					MAE	-7,35\%
					MFE	104.24*

1.8.7 Performance Per

This window shows you the performance of the trading system per day, week, month and year.

1.8.8 Symbols

The Symbols tab contains the list of the symbols that were used by the simulation.

1.8.9 Formula

The formula tab contains the formula that was used to create the trading system.

1.8.10 Profit distribution

Display a graph that shows you the profit distribution.

1.8.11 MAE/MFE

Display two graphs, one for maximum adverse exclusion and the other for the maximum favorable exclusion.

Max. Adverse Excursion distribution

Max. Favorable Excursion distribution

1.8.12 Custom graphs

Create custom graphs, could be Trade/MAE or Drawdown/MFE...

1.8.13 S.I.M.I

Shows you the position symbols distribution over markets, industries, sectors and indexes.

1.8.14 Reference symbol

The symbol used as reference.

1.8.15 Exit rules

Shows you the exit rules distribution and the average trade's performance for each exit rule.

Exit types

Average peaformance per for each exit type

1.8.16 Report settings

The Report settings tab allows you to define the default graph interval values.

1.8.17 Errors Tab

This tab displays the errors, if any, that occurred during the execution of the money management scripts.
The tab name will change to "No errors" if no error occurs during the money management scripts execution or if no money management rules are defined.

1.2.6.10.4 Advanced Money Management

1. Advanced Money Management

1.1. Introduction

The Money management plug-in let you take deep control over which instruments to buy, sell, short or cover, at which price and for which amount.
It will also let you you create advanced metrics to assess and evaluate any trading system.

You can also create variables within your advanced money management script and use the simulator optimizer to optimize these variables.

1.2. Create money management rules

In the 'Update trading system' or 'Create trading system' form, click on 'Advanced money management'; these money management rules you are about to create will be associated with the current trading system.

Money management
Capital Stops Advanced Money Management

You can also create money management rules by selecting (Analysis -> Advanced Money Management)

1.3. Money management events

There are five money management events:

- OnNewPosition: Called before the application open a position
- OnClosePosition: Called before the application exit a position
- OnEndPeriod: Called at the end of a period (On historical back testing a period is a day, a week or a month, depending on the timeframe)
- OnStartSimulation: Called just before the simulator starts
- OnEndSimulation: Called just after the simulator ends

Each event has its own variables and functions; you can create a script for each event.

Example (OnEndPeriod Event):

We are going to create a script that will order the simulator not to take new positions for the next 30 bars if the portfolio drawdown is below -20 percent.

The Script:

```
if(Portfolio.Drawdown < -20)
{
    // If portfolio drawdown is less than 20 percent, then we order the simulator
    // not to take new positions for the next 30 bars
    Functions.SkipPeriods(30);
}
```


Advanced Money Management

Event: OnCloseTrade

Event: OnEndPeriod

6 lines

Examples:

Reject an signal if the RSI value is lower than 50:

You can create directly this rule as a sell rule or you use the OnNewPosition event of the money management script.

```
TimeSeries t = Data.ParseFormula("a = rsi(14);").GetTimeSeries(NewPosition.Symbol
,"a");
if(t[0] < 50)
{
    Functions.RejectPosition();
}
```


Pair trading: In OnEndPeriod event

```
if(Your rule)
{
    MMPOSition pos = Portfolio.GetPosition(symbol_1);
    if(pos != null && !pos.IsLong)
    {
        // Exit positions
        Functions.CloseAllPositions(0);
    }
    // Buy symbol_1 & Short symbol_2
    Functions.AddLongPosition(symbol_1, 0, Orders.OpenMarketOrder());
    Functions.AddShortPosition(symbol_2, 0, Orders.OpenMarketOrder());
```

```
MMPosition pos = Portfolio.GetPosition(symbol_1);
if(pos != null && pos.IsLong)
{
        // Exit positions
    Functions.CloseAllPositions(0);
}
// Buy symbol_2 & Short symbol_1
Functions.AddLongPosition(symbol 2, 0, Orders.OpenMarketOrder());
Functions.AddShortPosition(symbol_1, 0, Orders.OpenMarketOrder());
```

\}

1.2.6.10.5 Screener

1. Screener

1.1. Introduction

The screener plug-ins let you scan symbols quotes using defined criteria.

1.2. Columns Set

Analysis -> Columns Set

Example: the following formula will add a column whose name is 'Perf 1D' and will show "the performance of the symbol for one day" on the review or the screener report.

AddColumn ("Perf 1D", Perf (close, 1));

1.3. Create a Review

Analysis -> Review

Display symbols for the specified date or bar.

1.4. Create a Screener

Analysis -> Screener

The screener scans the symbol's quotes and displays the symbols that meet your criteria. Criteria are controlled by the variable 'filter'.

Example:

1.4.1. Stats

Stats grid, in the review or the screener form, takes each column and calculate the maximum, minimum and average values.

Stats	close	open	perf 1d	rsi
Count	49,0000	49,0000	49,0000	49,0000
Avg	344,0224	344,4145	$-1,5798$	43,9964
Min	40,4700	39,2500	$-12,7445$	0,0000

1.2.6.11 Artificial Intelligence

1.2.6.11.1 Artificial Intelligence

1.Artificial Intelligence

Artificial intelligence is a plug-in that let you build prediction model using neural network and SVM (Support vector machine) systems.

1.1. Neural Networks

http://en.wikipedia.org/wiki/Neural_network

1.2. Create a prediction model

To create a prediction model, open the 'prediction model' form (Click on 'Al' then 'Prediction'), in the new form, click on 'Add'.

The prediction model has many settings; those settings will help you fine-tune your model.

Preskrion:						$\begin{aligned} & 3 \times \\ & \frac{3}{\operatorname{Tr} m} \end{aligned}$	
PAdd	Oupdote İive as	Relntiske Moded Msnager	Cxegery:	*			
Nues	Category	Surt teiteg dise	tindtoitng dxe	thous caurt	Model coewed	Gyches	Q
-		17/10/2005 16:51	171206009 16:51	t	*	0	0
as		17/10/2005 16:51	17/10,2007 16:51	1	H0	0	0

1.3. Learning, validation and testing periods

Each prediction model must have three periods.

The first period or the learning period is used to train the model.
The second period or the validation period is used to choose the best model among all the generated models. The third period or the testing period is used to test the model with new data. (Data on which the model was not trained)
Note that the model is trained only with data from the learning period.

To change the learning, validation and testing periods, click on the triangles and move them.

1.4. Learning and validation samples

There are two options:
Normal: The first bars (depending on the learning period) will be associated to the learning samples, and then the next bars will be associated with the validation samples.

Random: The learning and validation periods will be merged and the learning and validation samples will be chosen randomly.

1.5. Periodicity

This option let you choose the period that the prediction item will use.

1.6. Inputs

Inputs are time-series that will be used to train the prediction item.
This is probably the most important step in the creation of the prediction item.
Add a new input by clicking on 'Add'.

Columns:

- Select: The select checkbox indicate whether to enable or disable the current input
- Input Type: Select the input type you would like to use.
- Input: Display information about the input time-series.
- Settings: Define settings related to the input you have selected
- WS: Let you create multiple inputs from this input.

Example: if you create 'close' as input and set WS to two, the system will create two time-series. The first one is 'close' and the second one is 'close one bar ago' or 'ref (close, 1)'.

- Lag: Let you specify the lag to include for the input.

Example: if you create 'close' as input and set Lag to 3, the system will create the following input 'close three bar ago' or 'ref(close, 3)'.

- Preprocessing: Let you select the pre-processing calculation that will be applied to the input.
- R : This button is used to remove the selected input.

Input Types:

- Symbol Field: You can choose between open, high, low, close or volume times-series.
- Symbol Return: This creates a formula that returns the performance of one of these time-series: open, high, low, close, volume.
- Formula: This lets you build your own time-series using the formula editor.
- Extern Symbol: This lets you create a time-series based on an external symbol data.
- Database Field: This lets you create a time-series from a field database.

1.7. Output

The output is the time-series that will be predicted.
You can predict a symbol price, a symbol returns or any other time-series.
The output has the same settings as inputs.

The 'WS' column doesn't exists in the output settings. You can create only one output.

1.8. Neural network model settings

A neural network model has different settings that can dramatically improve or reduce the performance of the prediction model.

1.9. Network

A neural network model is composed of one input layer, one output layer and zero, one or many hidden layers. Click on the circles to select a layer.

Network settings:

- Annealing Epoch: The epoch at which the learning rate increase or decrease is performed
- Jitter Epoch: The epoch at which the Jitter is performed. Jitter is the process of adding small random noise to weights of all synapses at regular intervals in order to get the network out of a potential local minimum
- Learning Rate Increase Factor: Let the network learn faster in order to improve the global error, value should lies between 1.00 and 1.03
- Learning Rate Decrease Factor: Let the network learn slower in order to improve the global error, value should lies between 0.97 and 1.00

Input layer:
The input layer is the first layer of the neural network model.
The number of inputs determines the number of nodes for this layer.
Hidden layers:
Hidden layers are layers that are always between the input and the output layer.
Output layer:
The output layer is the last layer of the neural network model.
There is only one node in the output layer.
The value that leaves this layer is the predicted value.

Layer settings:

- Transfer function: Activation or transfer function in a back propagation network defines the way to obtain output of a neuron given the collective input from source synapses.
- Learning rate: Learning rate is one of the parameters that govern how fast a neural network learns and how effective the training is.
- Momentum: Momentum term associated with each synapse represents its tendency to retain its previous weight change. This factor varies from zero to one.
- Max Jitter: The maximum limit to the random noise added to weights while Jitter, Jitter is the process of adding small random noise to weights of all synapses at regular intervals in order to get the network out of a potential local minimum.
- Weight Decay: Each time the neural network is trained, the weights of synapses are multiplied by this 'Weight Decay'. Weight decay value is usually between 0.9 and 1.

1.10. Filter

The filter lets you create a formula that will be used to reject certain bars from the learning process.
Example: If you want to reject bars where the volume was insignificant then type something like this: 'volume < 100'.

1.11. Symbols

Select the symbols that will be used in the learning process.

1.12. Stop training settings

Specify when to stop the training, there are three options:

- By error value: Stop when the error value reaches a certain level.
- By error change: Stop when the error change goes below a certain value for a determined number of iterations.
- By iterations: Stop after a specific number of iterations.

Stop training conditionsBy error value
By error change
By Iterations

Iterations: 10000

1.13. Selecting the best model

Select the model that will be used in prediction among all the models created during the training.
Type: Select the model based on one of these values:

Network Error:

- MSE (Root mean square error)
- POCID (Directional accuracy)
- POCD (Prediction sign accuracy)
- UTHEIL (Coefficient U de Theil)

Track on set: Choose whether to select the best model among the training models or the validation models.

```
How to select the best model
    Type : MSE \vee
    Track on set \bigcirc Training © Validation
```


1.14. Train a model

In the 'Prediction' form, select an item then click on 'Train', the 'Prediction Progress' form appears.

Prediction Progress \quad X											
Iteration: 145		\square Chat Line			Ticker:		A	\checkmark		Stop	
Stats	Learing Chart	Validation Chat	Test Chart	Values	Prediction	Error graph					
Metric			Overall		Le	eaming		Validation	Test		
Netw	k ertor			0.0230272							
Absol	e error					. 628394		0.519235			
Root	ean squase error			571261		. 571261		0.350078			
Direct	nal Accuracy			537037		. 537037		0.800000			
Predi	Sion Sign Accuracy			,000000		. 000000		1.000000			
Coeff	cient U de Theil			186425		186425		0,566752			

The blue line refers to the iteration that produced the best prediction model depending on your settings.

1.15. Prediction

In the 'Prediction' form, select an item then click on the small arrow next to 'Predict'.
You have the choice to choose between 'Predict' and 'Predict a value'.

1.15.1. Predict

This option gives you the ability to predict values for a range of dates.

1.15.2. Predict a value

This option gives you the ability to predict a value for a specific date.

1.16. Re-Training

You have the possibility to re-train a prediction model on new data. To do so, click on 'Re-Train' button in the 'Prediction' form.

1.16.1. Re-Training Settings

Re-Training Settings lets you choose the range of dates and the learning and validation samples that will be used for the re-training.

1.17. Update a model

In the 'Prediction' form, select an item then click on 'Update'.
You will lose the data of the prediction model if you update the latter.

1.18. Re-initialize a model

Click on 'Reinitialize Model' in the 'Prediction' form to delete the date of the model.

1.19. Access a model from a formula

Two functions let you access a model data from a formula:

Predict("category name", "model name") ;
Return a time-series that contains the prediction values.

PredictSymbol("category name", "model name") ;
Return '1' if the prediction model was trained using the current symbol, otherwise returns ' 0 '.

1.2.6.11.2 Optimizer

1.Optimizer

1.1. Introduction

The optimizer is a plug-in that uses artificial intelligence algorithms to optimize rules, ranking systems, trading systems and prediction items.

1.2. Optimizer algorithms

The plug-in provides two algorithms:

- Genetic algorithm
- Population-based incremental learning

Example:
Take a list of rules with 1000 rules.
For these rules, we have more than billions of combination which will take years to back-test.
Optimization algorithms are used to find good solutions among all the combinations in a short period.

1.2.1. Genetic algorithm

These are the genetic algorithm parameters:

- Number of generation
- Population size
- Selection method: Elite, Rank or Roulette
- Crossover rate
- Mutation rate
- Random selection portion
http://en.wikipedia.org/wiki/Genetic_algorithm

1.2.2. PBIL algorithm

These are the PBIL algorithm parameters:

- Number of generation
- Population size
- Learning rate
- Number of best solutions to use in learning
http://en.wikipedia.org/wiki/Population-based_incremental_learning

1.3. Optimize items

1.3.1. Optimize list of rules

Search for the best combination of rules among a list of rules.

- In the 'Optimizer' form, click on 'Create'
- Select the optimization algorithm and 'List of Rules' in the 'What do you want to optimize?" list box
- Click on 'Next'
- Update the algorithm settings
- Click on 'Next'
- Select the number of rules
- Select a list of rules, by clicking on 'Select rules'.
- For list of rules, select whether to always include the current rule or not by checking or un-checking 'Always visible' checkbox
- Select the output
- Define a fitness formula
- Click on 'Next'
- Select the number of items to keep in the report
- Select the symbols the optimizer will use
- Click on 'Next'
- The optimizer item will now appears in the optimize manager.

Example:
List of rules contains 100 rules, from rule1 to rule100.

The optimizer will try to find good combination of rules.
The result will look like this:

Formula	Fitness
Rule87 \&\& rule3	0.9
Rule12 \&\& rule2	0.76
Rule33	0.66
Rule67 \&\& Rule32 \&\& Rule2	0.5

Fitness could be the return of the symbol or something else; it depends on the 'Fitness' formula.

1.3.2. Optimize ranking system

Try to find which combination of nodes and nodes' weight gives the best fitness score for the ranking system.

- In the 'Optimizer' form, click on 'Create'
- Select the optimization algorithm and 'Ranking System' in the 'What do you want to optimize?" list box
- Click on 'Next'
- Update the algorithm settings
- Click on 'Next'
- Select a ranking system by clicking on 'Select a ranking system'
- Select the number of buckets and the rebalance period
- Choose whether to optimize nodes' weight by checking or un-checking 'Optimize node weights' checkbox
- Type a fixed rule if you want to use a fixed rule in the ranking system evaluation
- Select the output
- Define a fitness formula
- Click on 'Next'
- Select the number of items to keep in the report
- Select the symbols the optimizer will use
- Click on 'Next'
- The optimizer item will now appears in the optimize manager.

1.3.3. Optimize trading system

Try to find which trading system works best given a buy, sell, short and cover list of rules, money management variables, and others settings.

- In the 'Optimizer' form, click on 'Create'
- Select the optimization algorithm and 'Trading System' in the 'What do you want to optimize?" list box
- Click on 'Next'
- Update the algorithm settings
- Click on 'Next'
- Select the number of buy and sell rules
- For each buy and sell rule, select a list of rules by clicking on 'Select rules'
- For each buy and sell rule, select whether to always include this rule or not by checking or un-checking 'Always visible' checkbox
- Define a fitness formula
- On the 'Settings' tab, type a fixed buy rule and a fixed sell rule if you want to include fixed rules in your trading system
- Select 'Optimization', to include capital and stops optimizable variables
- Click on 'Next'
- Select the number of items to keep in the report
- Select the symbols the optimizer will use
- Click on 'Next'
- The optimizer item will now appears in the optimize manager.

1.3.4. Optimize prediction item

Try to find which prediction item leads to a better prediction accuracy given a list of inputs.

- In the 'Optimizer' form, click on 'Create'
- Select the optimization algorithm and 'Prediction Model' in the 'What do you want to optimize?" list box
- Click on 'Next'
- Update the algorithm settings
- Click on 'Next'
- Select a prediction item then click on 'Load Inputs'
- Update the prediction item if necessary by clicking on 'Update Item'
- Select the input that will always be used in iterations by checking them (Fixed inputs)
- Define a fitness formula
- Click on 'Next'
- Select the number of items to keep in the report
- Select the symbols the optimizer will use
- Click on 'Next'
- The optimizer item will now appears in the optimize manager.

1.4. Optimize manager

The 'Optimize manager' list all optimize items (AI -> Optimizer)

To create an optimize item, click on 'Create'.
To remove an optimize item, click on 'Delete'.
To update an optimize item, click on 'Update'.

To load the optimizer report, click on 'Report'.
To start an optimize item, click either on 'Run' or on 'Run...'

Running an optimize item indefinitely, using 'Run...', means that when the optimizer reach the maximum number of generation or the fitness value converge, the software re-run the optimize item and increase the value of 'Turn' by one.

1.5. Turn

If you run an optimize item multiple times, you may end up each time with different results.
This is because the optimizer algorithms do not look for all combinations but instead try to find good solutions in a short period.
This is why we introduced the concept of 'Turn'.
The optimizer report includes the best items for all the turns (not only the last turn)..

1.2.6.12 External

1.2.6.12.1 Portfolio123

1. Portfolio123

1.1. Introduction

Portfolio123 is a service that lets you create ranking system models based on fundamental and technical items. Porfolio123 database contains more than 4000 fundamental ratios for all US companies. For more info, visit their website on www.portfolio123.com.
This plug-in lets Portfolio123 subscribers import factors, formulas and ranking system data.

1.2. Import a ranking system

- Open the Portfolio123 plug-in (Extern->Portfolio123)
- Select 'Settings' tab, make sure you have inserted your portfolio123 login and password.
- Select 'RS' tab
- Click on 'Load' if no ranking systems appear
- Select a ranking system
- Type in a name in the 'Name' text box
- Click on 'Create Item'
- Switch to 'P123' tab, your newly created item appears there.
Portfolio123 $\quad \square \times$
P123 F\&F RS Settings

```
\square
\squareBJS Small Cap GARP
\squareBJS Small Cap GARP 59
    Denny's 5 Factors Best Value
    Denny's Dummy System
    \square \text { Earnings Growth - Zacks}
    \squareEnergy Top35-1
    \squareErase TopPort123Factors&Formulas
    \squareFast Movers
    \square \text { FewCriticalFactors}
    \squareFilip's Super Value 92
```

```
Gen3


Name: BJS Mo Value

\subsection*{1.3. Create a factor}
- Open the Portfolio123 plug-in (Extern->Portfolio123)
- Select 'F\&F' tab
- Check the radio box 'Factor'
- Select a factor (select a category then a factor)
- Set the factor settings (lower or higher, rank vs.)
- Click on 'Create Item'
- Switch to 'P123' tab, your newly create item appears there.

\subsection*{1.4. Create a function}
- Open the Portfolio123 plug-in (Extern->Portfolio123)
- Select 'F\&F' tab
- Check the radio box 'Formula'
- Type a formula then type the formula name
- Set the formula settings (lower or higher, rank vs.)
- Click on 'Create Item'
- Switch to 'P123' tab, your newly create item appears there.


\subsection*{1.5. Download Portfolio123 data}
- Open the Portfolio123 plug-in (Extern->Portfolio123)
- Select 'P123' tab
- Check the items you want to download
- Select the start date and the end date
- Click on 'Start download'

If you want to start the download from the last update date, click on 'Download Missing Dates' instead of 'Start download'.


\subsection*{1.3 QuantShare Language}

\subsection*{1.3.1 Date-Time}

\subsection*{1.3.1.1 Year}
YEAR
Year
\begin{tabular}{ll} 
SYNTAX & Year() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns the current bar's year \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Year()
\end{tabular}

\subsection*{1.3.1.2 Date}

DATE
Date
SYNTAX Date()

RETURNS TEXT ARRAY
DESCRIPTION Returns the bar's Date
ADDITIONAL
INFO
EXAMPLE Date()

\subsection*{1.3.1.3 DateTicks}

DATETICKS
Date Ticks
SYNTAX DateTicks()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of ticks that represent the current date and time
ADDITIONAL
INFO
EXAMPLE DateTicks()

\subsection*{1.3.1.4 Day}

DAY
Day
SYNTAX Day()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the current bar's day of the month
ADDITIONAL
INFO
EXAMPLE Day()

\subsection*{1.3.1.5 DayOfWeek}

DAYOFWEEK
Day of Week
SYNTAX DayOfWeek()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the current bar's day of week ( 1 for Monday, 2 for Tuesday, 3 for Wednesday...)
ADDITIONAL
INFO
EXAMPLE DayOfWeek()

\subsection*{1.3.1.6 DayOfYear}

DAYOFYEAR
Day of Year
SYNTAX DayOfYear()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the current bar's day of the year
ADDITIONAL
INFO
EXAMPLE DayOfYear()

\subsection*{1.3.1.7 Hour}

HOUR
Date-time
Hour
SYNTAX Hour()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the current bar's hour
ADDITIONAL INFO

EXAMPLE Hour()

\subsection*{1.3.1.8 Interval}
INTERVAL
Date-time
Interval in ticks
SYNTAX Interval()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of ticks between the current and previous bar date
ADDITIONAL
INFO
EXAMPLE Interval()

\subsection*{1.3.1.9 Minute}

MINUTE
Date-time
Minute
SYNTAX Minute()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the current bar's minute
ADDITIONAL
INFO
EXAMPLE Minute()

\subsection*{1.3.1.10 Month}
MONTH
Month
SYNTAX Month()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the current bar's month
ADDITIONAL
INFO
EXAMPLE Month()

\subsection*{1.3.1.11 NbDays}

NBDAYS
Number of days
Date-time

SYNTAX NbDays( ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of days between the current bar and the bar referenced by the period value

ADDITIONAL
INFO
EXAMPLE NbDays(5)

\subsection*{1.3.1.12 Now}

NOW
Now
\begin{tabular}{ll} 
SYNTAX & Now() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the current Date
ADDITIONAL
INFO
EXAMPLE Now()

\subsection*{1.3.1.13 Second}

SECOND
\begin{tabular}{ll} 
SYNTAX & Second() \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns the current bar's second
ADDITIONAL INFO

EXAMPLE Second()

\subsection*{1.3.1.14 TimeTicks}
TIMETICKS
Time Ticks Date-time
SYNTAX TimeTicks()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of ticks that represent the current time
ADDITIONAL INFO

EXAMPLE TimeTicks()

\subsection*{1.3.1.15 Week}

WEEK
Date-time
Week
\begin{tabular}{ll} 
SYNTAX & Week () \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns the current bar's week \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Week ()
\end{tabular}

\subsection*{1.3.2 Application Info}

\subsection*{1.3.2.1 NbGroups}

\section*{NBGROUPS}

Application Info
Number of groups
\begin{tabular}{ll} 
SYNTAX & NbGroups() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns the number of groups \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & NbGroups ()
\end{tabular}

\subsection*{1.3.2.2 NbIndexes}

NBINDEXES
Number of indices
Application Info
\begin{tabular}{ll} 
SYNTAX & NbIndexes() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns the number of indexes \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & NbIndexes()
\end{tabular}

\subsection*{1.3.2.3 NbIndustries}

NBINDUSTRIES
Number of industries
Application Info
\begin{tabular}{ll} 
SYNTAX & NbIndustries() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns the number of industries \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & NbIndustries()
\end{tabular}

\subsection*{1.3.2.4 NbInGroup}
NBINGROUP
Number of symbols in the specified group
```

SYNTAX NbInGroup(ARRAY group name)
RETURNS NUMERIC ARRAY

```

DESCRIPTION Returns the number of symbols that are included in the specified group
ADDITIONAL INFO

EXAMPLE NbInGroup("Stock")

\subsection*{1.3.2.5 NbInIndex}

NBININDEX
Number of symbols in the specified index
Application Info

\section*{SYNTAX NbInIndex (ARRAY index name) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION Returns the number of symbols that are included in the specified index
ADDITIONAL
INFO
EXAMPLE NbInIndex("SP500")

\subsection*{1.3.2.6 NbInIndustry}

\section*{NBININDUSTRY}

Number of symbols in the specified industry
Application Info
\begin{tabular}{ll} 
SYNTAX & NbInIndustry( ARRAY industry name) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns the number of symbols that are included in the specified industry
ADDITIONAL
INFO
EXAMPLE NbInIndustry("Drug Stores")

\subsection*{1.3.2.7 NbInMarket}

NBINMARKET
Number of symbols in the specified market
Application Info

\section*{SYNTAX NbInMarket( ARRAY market name) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION Returns the number of symbols that are included in the specified market
ADDITIONAL
INFO
EXAMPLE NbInMarket("NASDQ")

\title{
1.3.2.8 NbInSector \\ NBINSECTOR \\ Number of symbols in the specified sector \\ Application Info
}

\section*{SYNTAX NbInSector( ARRAY sector name) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION Returns the number of symbols that are included in the specified sector
ADDITIONAL
INFO
EXAMPLE NbInSector("Services")

\subsection*{1.3.2.9 NbMarkets}

NBMARKETS
Number of markets
Application Info
\begin{tabular}{ll} 
SYNTAX & NbMarkets() \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns the number of markets
ADDITIONAL INFO

EXAMPLE NbMarkets()

\subsection*{1.3.2.10 NbSectors}

NBSECTORS
Number of sectors
Application Info
SYNTAX NbSectors()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of sectors
ADDITIONAL
INFO
EXAMPLE NbSectors()

\subsection*{1.3.3 Candlestick Pattern}

\subsection*{1.3.3.1 CdI2crows 0}
CDL2CROWS
Two Crows

SYNTAX CdI2crows()
RETURNS NUMERIC ARRAY
DESCRIPTION Two Crows, The Two Crows Pattern is a 3-day pattern.
ADDITIONAL Signal: Bearish
INFO Pattern: Reversal
Reliability: Medium
During an uptrend we see the market closing lower after an opening gap. Then we see a black day that fills the gap creating the Bearish Two Crows Pattern. It suggests the erosion of the uptrend, and warns about a possible trend reversal.

EXAMPLE Cdl2crows()

\subsection*{1.3.3.2 CdI2crows 1}

\section*{CDL2CROWS}

Two Crows

SYNTAX CdI2crows( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Two Crows, The Two Crows Pattern is a 3-day pattern.
ADDITIONAL Signal: Bearish
INFO Pattern: Reversal
Reliability: Medium
During an uptrend we see the market closing lower after an opening gap. Then we see a black day that fills the gap creating the Bearish Two Crows Pattern. It suggests the erosion of the uptrend, and warns about a possible trend reversal.

EXAMPLE Cdl2crows(open, high, low, close)

\subsection*{1.3.3.3 CdI3blackcrows 0}

\section*{CDL3BLACKCROWS}

Three Black Crows

SYNTAX Cdl3blackcrows()
RETURNS NUMERIC ARRAY
DESCRIPTION Three Black Crows, The Three Black Crows got their name from the resemblance of three crows looking down from their perch from a tree.

ADDITIONAL Signal: Bearish
INFO Pattern: reversal
Reliability: high
Three long black days with each successive open being within the body of the previous day and each successive close being below the previous day's and near the day's low.

EXAMPLE Cdl3blackcrows()

\subsection*{1.3.3.4 CdI3blackcrows 1}

\section*{CDL3BLACKCROWS}

Three Black Crows
\begin{tabular}{ll} 
SYNTAX & Cdl3blackcrows( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Three Black Crows, The Three Black Crows got their name from the resemblance of three \\
crows looking down from their perch from a tree.
\end{tabular}
\end{tabular}

ADDITIONAL Signal: Bearish
INFO Pattern: reversal
Reliability: high
Three long black days with each successive open being within the body of the previous day and each successive close being below the previous day's and near the day's low.

EXAMPLE Cdl3blackcrows(open, high, low, close)

\subsection*{1.3.3.5 CdI3inside 0}

\author{
CDL3INSIDE \\ Three Inside Up/Down
}

Candlestick Pattern
SYNTAX Cdl3inside()

RETURNS NUMERIC ARRAY
DESCRIPTION Three Inside Up/Down, Note that after the long candle day that is in the same direction of the trend that the Harami pattern occurs.

ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: high
A bullish Harami pattern is followed by a white day that has a higher close than the second day.

EXAMPLE Cdl3inside()

\subsection*{1.3.3.6 CdI3inside 1}

\author{
CDL3INSIDE \\ Three Inside Up/Down
}

SYNTAX CdI3inside( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Three Inside Up/Down, Note that after the long candle day that is in the same direction of the trend that the Harami pattern occurs.

ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: high
A bullish Harami pattern is followed by a white day that has a higher close than the second day.

EXAMPLE Cdl3inside(open, high, low, close)

\subsection*{1.3.3.7 CdI3linestrike 0}

\section*{CDL3LINESTRIKE}

Three-Line Strike

SYNTAX CdI3linestrike()
RETURNS NUMERIC ARRAY
DESCRIPTION Three-Line Strike : This function is contained within the Pattern Recognition set of indicators.

ADDITIONAL Three Line Strike Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: low
Identification
Three long white days with consecutively higher closes are followed by a fourth day that gaps open in the direction of the trend and closes below the open of the first day.
Three Line Strike Bearish
Signal: Bearish
Pattern: continuation
Reliability: low
Identification
Three long black days with consecutively lower closes is followed by a fourth day that gaps in the direction of the trend and closes above the open of the first day.

EXAMPLE Cdl3linestrike()

\subsection*{1.3.3.8 CdI3linestrike 1}

\section*{CDL3LINESTRIKE}

Three-Line Strike

SYNTAX Cdl3linestrike (ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Three-Line Strike : This function is contained within the Pattern Recognition set of indicators.

ADDITIONAL Three Line Strike Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: low
Identification
Three long white days with consecutively higher closes are followed by a fourth day that gaps open in the direction of the trend and closes below the open of the first day.
Three Line Strike Bearish
Signal: Bearish
Pattern: continuation
Reliability: low
Identification
Three long black days with consecutively lower closes is followed by a fourth day that gaps in the direction of the trend and closes above the open of the first day.

EXAMPLE Cdl3linestrike(open, high, low, close)

\subsection*{1.3.3.9 CdI3outside 0}
CDL3OUTSIDEThree Outside Up/Down
SYNTAX Cdl3outside()
RETURNS NUMERIC ARRAY
DESCRIPTION Three Outside Up/Down : This function is contained within the Pattern Recognition set ofindicators.
ADDITIONAL Three Outside Down
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A bearish Engulfing pattern is followed by a black day whose close is lower than thesecond day.Three Outside Up
Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A bullish Engulfing pattern is followed by a white day whose close is higher than thesecond day.EXAMPLE Cdl3outside()

\subsection*{1.3.3.10 CdI3outside 1}

CDL3OUTSIDE
Three Outside Up/Down

SYNTAX Cdl3outside( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Three Outside Up/Down : This function is contained within the Pattern Recognition set of indicators.

ADDITIONAL Three Outside Down
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A bearish Engulfing pattern is followed by a black day whose close is lower than the second day.
Three Outside Up
Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A bullish Engulfing pattern is followed by a white day whose close is higher than the second day.

EXAMPLE Cdl3outside(open, high, low, close)

\subsection*{1.3.3.11 CdI3staRsinsouth 0}

\section*{CDL3STARSINSOUTH}

Three Stars In The South

SYNTAX Cdl3staRsinsouth()
RETURNS NUMERIC ARRAY
DESCRIPTION Three Stars In The South, The slow down of the trend is visually obvious.
ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: moderate
A long black day with a long lower shadow is followed by a similar but smaller black day whose lower shadow is shallower than the first day. The third day is a small Black Marubozu (open is the high of the day and the close is the low of the day) that lies within the second dayï \(i^{1 / 2}\) s trading range.

EXAMPLE Cdl3staRsinsouth()

\subsection*{1.3.3.12 CdI3staRsinsouth 1}

\section*{CDL3STARSINSOUTH}

Three Stars In The South

\section*{SYNTAX Cdl3staRsinsouth( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION Three Stars In The South, The slow down of the trend is visually obvious.
ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: moderate
A long black day with a long lower shadow is followed by a similar but smaller black day whose lower shadow is shallower than the first day. The third day is a small Black Marubozu (open is the high of the day and the close is the low of the day) that lies within the second dayï \({ }_{i} 1 / 2\) s trading range.

EXAMPLE Cdl3staRsinsouth(open, high, low, close)

\subsection*{1.3.3.13 CdI3whitesoldiers 0}

\section*{CDL3WHITESOLDIERS}

Three Advancing White Soldiers

SYNTAX CdI3whitesoldiers()
RETURNS NUMERIC ARRAY
DESCRIPTION Three Advancing White Soldiers, The Three White Soldiers (also known as The Advancing Three White Soldiers) is a healthy market reversal pattern.

ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: high
Three long white days with each successive open being within the body of the previous day and each successive close being higher than the previous day and near the dayï̈ \({ }^{1 / 2}\) s high.

EXAMPLE Cdl3whitesoldiers()

\subsection*{1.3.3.14 CdI3whitesoldiers 1}

CDL3WHITESOLDIERS
Three Advancing White Soldiers

\subsection*{1.3.3.15 CdIAbandonedbaby 0}

\section*{CDLABANDONEDBABY}

Abandoned Baby

SYNTAX CdIAbandonedbaby (ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Abandoned Baby, A rare reversal pattern characterized by a gap followed by a Doji, which is then followed by another gap in the opposite direction.

ADDITIONAL Abandoned Baby Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a Doji that gaps in the direction of the trend. Then a black day occurs gapping in the opposite direction with no overlapping shadows.
Abandoned Baby Bullish
Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by a Doji that gaps in the direction of the trend. Then a white day occurs gapping in the opposite direction with no overlapping shadows.

EXAMPLE CdlAbandonedbaby(14)

\subsection*{1.3.3.16 CdIAbandonedbaby 1}

\section*{CDLABANDONEDBABY}

Abandoned Baby
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
CdIAbandonedbaby( ARRAY open, ARRAY high, ARRAY low, ARRAY close, \\
ARRAY penetration)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Abandoned Baby, A rare reversal pattern characterized by a gap followed by a Doji,
\end{tabular} which is then followed by another gap in the opposite direction.

ADDITIONAL Abandoned Baby Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a Doji that gaps in the direction of the trend. Then a black day occurs gapping in the opposite direction with no overlapping shadows.
Abandoned Baby Bullish
Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by a Doji that gaps in the direction of the trend. Then a white day occurs gapping in the opposite direction with no overlapping shadows.

EXAMPLE CdlAbandonedbaby(open, high, low, close, 14)

\subsection*{1.3.3.17 CdIAdvanceblock 0}
CDLADVANCEBLOCKCandlestick PatternAdvance Block
SYNTAX CdIAdvanceblock()
RETURNS NUMERIC ARRAY
DESCRIPTION Advance Block, The Advance Block is somewhat indicative as the Three White Soldiersbut it is a bearish signal.
ADDITIONAL Signal: Bearish
INFO
Pattern: reversalReliability: moderateThree white days. Each successive day opens within the body of the previous day andcloses above the previous day. The bodies of the candles get progressively smaller withthe upper shadows of day 2 and 3 getting progressively longer.
EXAMPLE CdlAdvanceblock()

\subsection*{1.3.3.18 CdIAdvanceblock 1}

\section*{CDLADVANCEBLOCK}

Advance Block
\begin{tabular}{ll} 
SYNTAX & CdlAdvanceblock(ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Advance Block, The Advance Block is somewhat indicative as the Three White Soldiers \\
but it is a bearish signal.
\end{tabular}
\end{tabular}
ADDITIONAL Signal: Bearish

INFO Pattern: reversal
Reliability: moderate
Three white days. Each successive day opens within the body of the previous day and closes above the previous day. The bodies of the candles get progressively smaller with the upper shadows of day 2 and 3 getting progressively longer.

EXAMPLE CdlAdvanceblock(open, high, low, close)

\subsection*{1.3.3.19 CdIBelthold 0}

\section*{CDLBELTHOLD}

Belt-hold
SYNTAX CdIBelthold()

RETURNS NUMERIC ARRAY
DESCRIPTION Belt-hold, The Belt Hold lines are formed by single candlesticks.
\begin{tabular}{|c|c|}
\hline ADDITIONAL INFO & \begin{tabular}{l}
Belt Hold Bearish \\
Signal: Bearish \\
Pattern: reversal \\
Reliability: low \\
Identification \\
A black day occurs with no upper shadow and a close near the day's low. \\
Belt Hold Bullish \\
Signal: Bullish \\
Pattern: reversal \\
Reliability: low \\
Identification \\
A white day occurs with no lower shadow and a close near the dayï \({ }^{1 / 2}\) s high.
\end{tabular} \\
\hline EXAMPLE & CdiBelthold() \\
\hline
\end{tabular}

\subsection*{1.3.3.20 CdIBelthold 1}

CDLBELTHOLD
Belt-hold

SYNTAX CdIBelthold( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Belt-hold, The Belt Hold lines are formed by single candlesticks.
\begin{tabular}{ll} 
ADDITIONAL & Belt Hold Bearish \\
INFO & Signal: Bearish \\
& Pattern: reversal \\
& Reliability: low \\
& Identification \\
& A black day occurs with no upper shadow and a close near the day's low. \\
& Belt Hold Bullish \\
& Signal: Bullish \\
& Pattern: reversal \\
& Reliability: low \\
& Identification \\
& A white day occurs with no lower shadow and a close near the dayïï \(1 / 2\) shigh. \\
&
\end{tabular}

\subsection*{1.3.3.21 CdIBreakaway 0}

\section*{CDLBREAKAWAY}

Breakaway

SYNTAX CdIBreakaway()
RETURNS NUMERIC ARRAY
DESCRIPTION Breakaway, If a trend has been evident, the breakaway pattern, whether bullish or bearish initially indicates the acceleration of that trend.

ADDITIONAL Bullish Breakaway
INFO Signal: Bullish
Pattern: Reversal
Reliability: Medium
Identification
There is a downtrend but we also see that the prices bottom out and level off now. The result is a long white candlestick that however does not close the initial downward gap of the first and second days. This suggests a short-term reversal.
Bearish Breakaway
Signal: Bearish
Pattern: Reversal
Reliability: Medium
Identification
We see this pattern during an uptrend marked with a bullish surge that eventually weakens. This weakening is illustrated by a long black candlestick that is unable to close the gap into the body of the first day. These events warn us about a short-term reversal.

EXAMPLE CdIBreakaway()

\subsection*{1.3.3.22 CdIBreakaway 1}

\section*{CDLBREAKAWAY}

Breakaway
SYNTAX CdIBreakaway (ARRAY open, ARRAY high, ARRAY low, ARRAY close)

RETURNS NUMERIC ARRAY
DESCRIPTION Breakaway, If a trend has been evident, the breakaway pattern, whether bullish or bearish initially indicates the acceleration of that trend.

ADDITIONAL Bullish Breakaway
INFO Signal: Bullish
Pattern: Reversal
Reliability: Medium
Identification
There is a downtrend but we also see that the prices bottom out and level off now. The result is a long white candlestick that however does not close the initial downward gap of the first and second days. This suggests a short-term reversal.
Bearish Breakaway
Signal: Bearish
Pattern: Reversal
Reliability: Medium
Identification
We see this pattern during an uptrend marked with a bullish surge that eventually weakens. This weakening is illustrated by a long black candlestick that is unable to close the gap into the body of the first day. These events warn us about a short-term reversal.

EXAMPLE CdIBreakaway(open, high, low, close)

\subsection*{1.3.3.23 CdIClosingmarubozu 0}

\author{
CDLCLOSINGMARUBOZU \\ Closing Marubozu
}

SYNTAX CdIClosingmarubozu()
RETURNS NUMERIC ARRAY
DESCRIPTION Closing Marubozu, a Closing Marubozu has no shadow at it's closing end.
ADDITIONAL Black Closing marubozu
INFO Signal: Bearish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The Black Closing Marubozu is a single candlestick pattern characterized by its long black body. It does not have a lower shadow but it has an upper shadow. It is an extremely strong bearish candlestick pattern.
White Closing Marubozu
Signal: Bullish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The White Closing Marubozu is a single candlestick pattern characterized by a long white body with no upper shadow. This is an extremely strong bullish candlestick pattern.

EXAMPLE CdlClosingmarubozu()

\subsection*{1.3.3.24 CdIClosingmarubozu 1}

\author{
CDLCLOSINGMARUBOZU
}

Closing Marubozu

SYNTAX CdIClosingmarubozu( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Closing Marubozu, a Closing Marubozu has no shadow at it's closing end.
ADDITIONAL Black Closing marubozu
INFO Signal: Bearish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The Black Closing Marubozu is a single candlestick pattern characterized by its long black body. It does not have a lower shadow but it has an upper shadow. It is an extremely strong bearish candlestick pattern.
White Closing Marubozu
Signal: Bullish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The White Closing Marubozu is a single candlestick pattern characterized by a long white body with no upper shadow. This is an extremely strong bullish candlestick pattern.

EXAMPLE CdlClosingmarubozu(open, high, low, close)

\subsection*{1.3.3.25 CdIConcealbabyswall 0}

\author{
CDLCONCEALBABYSWALL \\ Concealing Baby Swallow
}

SYNTAX CdIConcealbabyswall()
RETURNS NUMERIC ARRAY
DESCRIPTION Concealing Baby Swallow, The first two days of the signal, two Black Marubozus, demonstrate the continuation of the downtrend.

ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: high
The first two days are Black Marubozu days (open is the high of the day and the close is the low of the day). The following day is a black day that gaps in the same direction but trades up into the body of the second day. The final day is a Black Marubozu that gaps up and sells off to engulf the third day.

EXAMPLE CdlConcealbabyswall()

\subsection*{1.3.3.26 CdIConcealbabyswall 1}

\author{
CDLCONCEALBABYSWALL \\ Concealing Baby Swallow
}

SYNTAX CdIConcealbabyswall( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Concealing Baby Swallow, The first two days of the signal, two Black Marubozus, demonstrate the continuation of the downtrend.

ADDITIONAL Signal: Bullish
INFO Pattern: reversal
Reliability: high
The first two days are Black Marubozu days (open is the high of the day and the close is the low of the day). The following day is a black day that gaps in the same direction but trades up into the body of the second day. The final day is a Black Marubozu that gaps up and sells off to engulf the third day.

EXAMPLE CdlConcealbabyswall(open, high, low, close)

\subsection*{1.3.3.27 CdICounterattack 0}

\section*{CDLCOUNTERATTACK}

Counterattack Lines

\section*{SYNTAX CdICounterattack()}

RETURNS NUMERIC ARRAY
DESCRIPTION Counterattack, Meeting Lines (or Counterattack Lines) are formed when opposite coloured bodies have the same closing price.

ADDITIONAL A counter attack pattern is formed when opposite colour candles share the same clse.
INFO This two candle pattern can be bullish or bearish depending where the pattern appears. The counter attack pattern warns that the tide is turning.

EXAMPLE CdlCounterattack()

\subsection*{1.3.3.28 CdICounterattack 1}

\section*{CDLCOUNTERATTACK}

Counterattack Lines

SYNTAX CdICounterattack( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Counterattack, Meeting Lines (or Counterattack Lines) are formed when opposite coloured bodies have the same closing price.

ADDITIONAL A counter attack pattern is formed when opposite colour candles share the same clse.
INFO This two candle pattern can be bullish or bearish depending where the pattern appears. The counter attack pattern warns that the tide is turning.

EXAMPLE CdlCounterattack(open, high, low, close)

\subsection*{1.3.3.29 CdIDarkcloudcover 0}
CDLDARKCLOUDCOVER
Dark Cloud Cover
SYNTAX CdIDarkcloudcover( ARRAY penetration)

RETURNS NUMERIC ARRAY
DESCRIPTION Dark Cloud Cover, The dark Cloud Cover is the bearish counterpart to the Piercing pattern.

ADDITIONAL Dark Cloud Cover Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a black day which gaps above the high of the white candle and then closes below the midpoint of the first day's body.

EXAMPLE CdIDarkcloudcover(14)

\subsection*{1.3.3.30 CdIDarkcloudcover 1}

CDLDARKCLOUDCOVER
Dark Cloud Cover

SYNTAX CdIDarkcloudcover( ARRAY open, ARRAY high, ARRAY low, ARRAY close, ARRAY penetration)

RETURNS NUMERIC ARRAY
DESCRIPTION Dark Cloud Cover, The dark Cloud Cover is the bearish counterpart to the Piercing pattern.

ADDITIONAL Dark Cloud Cover Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a black day which gaps above the high of the white candle and then closes below the midpoint of the first day's body.

EXAMPLE CdIDarkcloudcover(open, high, low, close, 14)

\subsection*{1.3.3.31 CdIDoji 0}

\section*{CDLDOJI}

Doji

SYNTAX CdIDoji()
RETURNS NUMERIC ARRAY
DESCRIPTION Doji, the Doji is one of the most important signals in candlestick analysis.
ADDITIONAL Doji
INFO Signal: Indecision
Pattern: Reversal/Continuation
Reliability: Low
Identification:
If a security has virtually equal opening and closing prices, this leads to a Doji. The length of the upper and lower shadows of a Doji can vary and consequently the resulting candlestick may look like a cross, inverted cross or a plus sign. Doji, taken alone, is a neutral pattern.

\author{
EXAMPLE \\ CdIDoji()
}

\subsection*{1.3.3.32 CdIDoji 1}

\section*{CDLDOJI}

Doji

SYNTAX CdIDoji( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Doji, the Doji is one of the most important signals in candlestick analysis.
ADDITIONAL Doji
INFO Signal: Indecision
Pattern: Reversal/Continuation
Reliability: Low
Identification:
If a security has virtually equal opening and closing prices, this leads to a Doji. The length of the upper and lower shadows of a Doji can vary and consequently the resulting candlestick may look like a cross, inverted cross or a plus sign. Doji, taken alone, is a neutral pattern.

EXAMPLE CdIDoji(open, high, low, close)

\subsection*{1.3.3.33 CdIDojistar 0}
\begin{tabular}{ll} 
CDLDOJISTAR \\
Doji Star & Candlestick Pattern
\end{tabular}
SYNTAX CdIDojistar()

RETURNS NUMERIC ARRAY
DESCRIPTION Doji Star, Upon seeing a Doji in an overbought or oversold condition, an extremely high probability reversal situation becomes evident.

ADDITIONAL Doji Star Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
A long black day is followed by a Doji that gaps in the direction of the trend. The shadows of the Doji should not be long.
Doji Star Bearish
Signal: Bearish
Pattern: reversal
Reliability: moderate
Identification
A long white day is followed by a Doji that gaps in the direction of the trend. The shadows of the Doji should not be long.

EXAMPLE CdIDojistar()

\subsection*{1.3.3.34 CdIDojistar 1}

\author{
CDLDOJISTAR \\ Doji Star
}

SYNTAX CdIDojistar( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Doji Star, Upon seeing a Doji in an overbought or oversold condition, an extremely high probability reversal situation becomes evident.

ADDITIONAL Doji Star Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
A long black day is followed by a Doji that gaps in the direction of the trend. The shadows of the Doji should not be long.
Doji Star Bearish
Signal: Bearish
Pattern: reversal
Reliability: moderate
Identification
A long white day is followed by a Doji that gaps in the direction of the trend. The shadows of the Doji should not be long.

EXAMPLE CdIDojistar(open, high, low, close)

\subsection*{1.3.3.35 CdIDragonflydoji 0}

\section*{CDLDRAGONFLYDOJI \\ Dragonfly Doji}

SYNTAX CdIDragonflydoji()
RETURNS NUMERIC ARRAY
DESCRIPTION Dragonfly Doji, The Dragonfly Doji occurs when trading opens, trades lower, then closes at the open price which is the high of the day.

ADDITIONAL Dragonfly Doji Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the upper end of a trading range with a long lower shadow (the longer the more bearish) with no, or almost no upper shadow.
Dragonfly Doji Bullish
Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the upper end of the trading range with a long lower shadow (the longer the more bullish).

EXAMPLE CdlDragonflydoji()

\subsection*{1.3.3.36 CdIDragonflydoji 1}

\section*{CDLDRAGONFLYDOJI}

Dragonfly Doji

SYNTAX CdIDragonflydoji( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Dragonfly Doji, The Dragonfly Doji occurs when trading opens, trades lower, then closes at the open price which is the high of the day.

ADDITIONAL Dragonfly Doji Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the upper end of a trading range with a long lower shadow (the longer the more bearish) with no, or almost no upper shadow.
Dragonfly Doji Bullish
Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the upper end of the trading range with a long lower shadow (the longer the more bullish).

EXAMPLE CdIDragonflydoji(open, high, low, close)

\subsection*{1.3.3.37 CdIEngulfing 0}

\section*{CDLENGULFING}

Engulfing Pattern

SYNTAX CdIEngulfing(
RETURNS NUMERIC ARRAY
DESCRIPTION Engulfing Pattern, Two of the most compelling candlestick signals are the Bullish Engulfing Pattern and Bearish Engulfing Pattern.

ADDITIONAL Engulfing Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
A black day is completely \(i_{i}{ }^{1 / 2}\) engulfedi \(i_{i} 1 / 2\) by a large white day that gaps below the black dayï \(\ddot{c}^{1 / 2}\) s low and rallies to close above its high.
Engulfing Bearish
Signal: Bearish
Pattern: reversal
Reliability: moderate
Identification
A white day is then completely \(\ddot{i}_{i}^{1 / 2}\) engulfedï \({ }_{i}^{1 / 2}\) by a large black day which gaps above the white day's high and closes below its low.

EXAMPLE CdlEngulfing()

\subsection*{1.3.3.38 CdIEngulfing 1}

\section*{CDLENGULFING}

Engulfing Pattern

SYNTAX CdIEngulfing( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Engulfing Pattern, Two of the most compelling candlestick signals are the Bullish Engulfing Pattern and Bearish Engulfing Pattern.

ADDITIONAL Engulfing Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
A black day is completely \(i_{i}{ }^{1 / 2}\) engulfedii \(i_{i}^{1 / 2}\) by a large white day that gaps below the black dayï \(\ddot{i}^{1 / 2}\) s low and rallies to close above its high.
Engulfing Bearish
Signal: Bearish
Pattern: reversal
Reliability: moderate
Identification
A white day is then completely \(\ddot{i}_{\dot{c}}^{1 / 2}\) engulfedï \({ }_{i}^{1 / 2}\) by a large black day which gaps above the white day's high and closes below its low.

EXAMPLE CdIEngulfing(open, high, low, close)

\subsection*{1.3.3.39 CdIEveningdojistar 0}

\author{
CDLEVENINGDOJISTAR \\ Evening Doji Star
}

SYNTAX CdIEveningdojistar( ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Evening Doji Star, A three day bearish reversal pattern similar to the Evening Star.
ADDITIONAL Evening Doji Star Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a Doji that gaps in the direction of the trend. The third day is a black day that closes in the bottom half of the white candle.

EXAMPLE CdlEveningdojistar(14)

\subsection*{1.3.3.40 CdIEveningdojistar 1}

\section*{CDLEVENINGDOJISTAR}

Evening Doji Star

SYNTAX CdIEveningdojistar( ARRAY open, ARRAY high, ARRAY low, ARRAY close, ARRAY penetration)

RETURNS NUMERIC ARRAY
DESCRIPTION Evening Doji Star, A three day bearish reversal pattern similar to the Evening Star.
ADDITIONAL Evening Doji Star Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a Doji that gaps in the direction of the trend. The third day is a black day that closes in the bottom half of the white candle.

EXAMPLE CdIEveningdojistar(open, high, low, close, 14)

\subsection*{1.3.3.41 CdIEveningstar 0}

\section*{CDLEVENINGSTAR}
Evening Star

SYNTAX CdIEveningstar( ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Evening Star, The Evening Star pattern is a top reversal signal.
ADDITIONAL Evening Star Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a small body that gaps in the direction of the trend. The third day is a black day that closes in the bottom half of the white candle.

EXAMPLE CdIEveningstar(14)

\subsection*{1.3.3.42 CdIEveningstar 1}

\section*{CDLEVENINGSTAR}

Evening Star

\section*{SYNTAX CdIEveningstar( ARRAY open, ARRAY high, ARRAY low, ARRAY close, ARRAY penetration)}

RETURNS NUMERIC ARRAY
DESCRIPTION Evening Star, The Evening Star pattern is a top reversal signal.
ADDITIONAL Evening Star Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a small body that gaps in the direction of the trend. The third day is a black day that closes in the bottom half of the white candle.

EXAMPLE CdlEveningstar(open, high, low, close, 14)

\subsection*{1.3.3.43 CdIGapsidesidewhite 0}

\section*{CDLGAPSIDESIDEWHITE}

Up/Down-gap side-by-side white lines

SYNTAX CdIGapsidesidewhite()
RETURNS NUMERIC ARRAY
DESCRIPTION Up/Down-gap side-by-side white lines, The Up Side By Side White Lines Pattern appears in a bullish market.

ADDITIONAL Side By Side White Lines Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A black day is followed by a white day that gaps in the direction of the trend. The third candle is also white and is almost identical to the previous day.
Side by Side White Lines Bullish
Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A white day is followed by another white day that gaps in the direction of the trend. The third candle is also white and is almost identical to the previous day.

EXAMPLE CdlGapsidesidewhite()

\subsection*{1.3.3.44 CdIGapsidesidewhite 1}

\section*{CDLGAPSIDESIDEWHITE}

SYNTAX CdIGapsidesidewhite( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Up/Down-gap side-by-side white lines, The Up Side By Side White Lines Pattern appears in a bullish market.

ADDITIONAL Side By Side White Lines Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A black day is followed by a white day that gaps in the direction of the trend. The third candle is also white and is almost identical to the previous day.
Side by Side White Lines Bullish
Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A white day is followed by another white day that gaps in the direction of the trend. The third candle is also white and is almost identical to the previous day.

EXAMPLE CdlGapsidesidewhite(open, high, low, close)

\subsection*{1.3.3.45 CdIGravestonedoji 0}

\section*{CDLGRAVESTONEDOJI}

Gravestone Doji
SYNTAX CdIGravestonedoji()

RETURNS NUMERIC ARRAY
DESCRIPTION Gravestone Doji, The Gravestone Doji is formed when the open and the close occur at the low end of the trading range.

ADDITIONAL Gravestone Doji Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the lower end of the trading range. The upper shadow is usually long while the lower shadow is small or almost nonexistent.
Gravestone Doji Bullish
Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the lower end of the trading range. The upper shadow is usually long while the lower shadow is small or almost nonexistent.

EXAMPLE CdlGravestonedoji()

\subsection*{1.3.3.46 CdIGravestonedoji 1}

\section*{CDLGRAVESTONEDOJI}

Gravestone Doji

SYNTAX CdIGravestonedoji( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Gravestone Doji, The Gravestone Doji is formed when the open and the close occur at the low end of the trading range.

ADDITIONAL Gravestone Doji Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the lower end of the trading range. The upper shadow is usually long while the lower shadow is small or almost nonexistent.
Gravestone Doji Bullish
Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A Doji forms at the lower end of the trading range. The upper shadow is usually long while the lower shadow is small or almost nonexistent.

EXAMPLE CdlGravestonedoji(open, high, low, close)

\subsection*{1.3.3.47 CdIHammer 0}
CDLHAMMERCandlestick PatternHammer
SYNTAX CdIHammer()
RETURNS NUMERIC ARRAY
DESCRIPTION Hammer, The Hammer is comprised of one candle.
ADDITIONAL Hammer Bullish
INFO Signal: BullishPattern: reversalReliability: low/moderateIdentificationA small real body forms at the upper end of a trading range with a long lower shadow (thelonger the more bullish) with no, or almost no upper shadow.
EXAMPLE CdlHammer()

\subsection*{1.3.3.48 CdIHammer 1}

CDLHAMMER
Candlestick Pattern
Hammer
\begin{tabular}{ll} 
SYNTAX & CdIHammer( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Hammer, The Hammer is comprised of one candle.
\end{tabular}

ADDITIONAL Hammer Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A small real body forms at the upper end of a trading range with a long lower shadow (the longer the more bullish) with no, or almost no upper shadow.

EXAMPLE CdlHammer(open, high, low, close)

\subsection*{1.3.3.49 CdIHangingman 0}
CDLHANGINGMANHanging Man
SYNTAX CdlHangingman()
RETURNS NUMERIC ARRAY
DESCRIPTION Hanging Man, The Hanging Man is also comprised of one candle.
ADDITIONAL Hanging Man Bearish INFO Signal: Bearish
Pattern: reversal
Reliability: low/moderate
IdentificationA small real body forms at the upper end of the trading range with a long lower shadow(the longer the more bearish) with no, or almost no upper shadow.
EXAMPLE CdlHangingman()

\subsection*{1.3.3.50 CdIHangingman 1}

\author{
CDLHANGINGMAN \\ Hanging Man
}
SYNTAX CdIHangingman( ARRAY open, ARRAY high, ARRAY low, ARRAY close)

RETURNS NUMERIC ARRAY
DESCRIPTION Hanging Man, The Hanging Man is also comprised of one candle.
\begin{tabular}{ll} 
ADDITIONAL & Hanging Man Bearish \\
INFO & Signal: Bearish \\
& Pattern: reversal \\
& Reliability: low/moderate \\
& Identification
\end{tabular}

A small real body forms at the upper end of the trading range with a long lower shadow (the longer the more bearish) with no, or almost no upper shadow.

EXAMPLE CdlHangingman(open, high, low, close)

\subsection*{1.3.3.51 CdIHarami 0}

\author{
CDLHARAMI \\ Candlestick Pattern \\ Harami Pattern
}

SYNTAX CdIHarami()
RETURNS NUMERIC ARRAY
DESCRIPTION Harami Pattern, The Harami is an often seen formation.
ADDITIONAL Harami Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low
Identification
A long black day is followed by a white day which gaps opposite the trend and is completely engulfed by the real body of the first day.

\section*{EXAMPLE CdlHarami()}

\subsection*{1.3.3.52 CdIHarami 1}

\section*{CDLHARAMI}

Harami Pattern
\begin{tabular}{ll} 
SYNTAX & CdIHarami( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Harami Pattern, The Harami is an often seen formation.
\end{tabular}

ADDITIONAL Harami Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low
Identification
A long black day is followed by a white day which gaps opposite the trend and is completely engulfed by the real body of the first day.

EXAMPLE CdlHarami(open, high, low, close)

\subsection*{1.3.3.53 CdIHaramicross 0}

\section*{CDLHARAMICROSS}

Harami Cross Pattern

SYNTAX CdIHaramicross()
RETURNS NUMERIC ARRAY
DESCRIPTION Harami Cross Pattern, A two day pattern similar to the Harami (see CDLHARAMI() ), the difference is that the last day is a Doji.

ADDITIONAL Harami Cross Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low
Identification
A long black day is followed by a Doji which gaps opposite the trend and is completely
engulfed by the real body of the first day.
Harami Cross Bearish
Signal: Bearish
Pattern: reversal
Reliability: moderate
Identification
A long white day is followed by a Doji that gaps down and is completely engulfed by the real body of the first day.

EXAMPLE CdlHaramicross()

\subsection*{1.3.3.54 CdIHaramicross 1}

\section*{CDLHARAMICROSS}

Harami Cross Pattern
SYNTAX CdlHaramicross( ARRAY open, ARRAY high, ARRAY low, ARRAY close)

RETURNS NUMERIC ARRAY
DESCRIPTION Harami Cross Pattern, A two day pattern similar to the Harami (see CDLHARAMI() ), the difference is that the last day is a Doji.

ADDITIONAL Harami Cross Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low
Identification
A long black day is followed by a Doji which gaps opposite the trend and is completely
engulfed by the real body of the first day.
Harami Cross Bearish
Signal: Bearish
Pattern: reversal
Reliability: moderate
Identification
A long white day is followed by a Doji that gaps down and is completely engulfed by the real body of the first day.

EXAMPLE CdlHaramicross(open, high, low, close)

\subsection*{1.3.3.55 CdIHighwave 0}
CDLHIGHWAVECandlestick PatternHigh-Wave Candle
SYNTAX CdIHighwave()
RETURNS NUMERIC ARRAY
DESCRIPTION High-Wave Candle : This function is contained within the Pattern Recognition set of indicators.
ADDITIONAL High Wave
INFO Signal: Indecision
Pattern: Reversal
Reliability: Medium
Identification:
High Wave is a type of candlestick characterized with either a very long upper or a lowershadow. It has only a short real body. A group of these patterns may signal a market turn.
EXAMPLE CdlHighwave()

\subsection*{1.3.3.56 CdIHighwave 1}

\author{
CDLHIGHWAVE \\ Candlestick Pattern \\ High-Wave Candle
}

SYNTAX CdIHighwave( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION High-Wave Candle : This function is contained within the Pattern Recognition set of indicators.

ADDITIONAL High Wave
INFO Signal: Indecision
Pattern: Reversal
Reliability: Medium
Identification:
High Wave is a type of candlestick characterized with either a very long upper or a lower shadow. It has only a short real body. A group of these patterns may signal a market turn.

EXAMPLE CdlHighwave(open, high, low, close)

\subsection*{1.3.3.57 CdIHikkake 0}

CDLHIKKAKE
Candlestick Pattern
Hikkake Pattern
\begin{tabular}{ll} 
SYNTAX & CdlHikkake() \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Hikkake Pattern
ADDITIONAL INFO

EXAMPLE CdlHikkake()

\subsection*{1.3.3.58 CdIHikkake 1}

\section*{CDLHIKKAKE}

Candlestick Pattern
Hikkake Pattern

SYNTAX CdIHikkake( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hikkake Pattern
ADDITIONAL
INFO
EXAMPLE CdlHikkake(open, high, low, close)

\subsection*{1.3.3.59 CdIHikkakemod 0}
CDLHIKKAKEMOD
SYNTAX CdIHikkakemod()

RETURNS NUMERIC ARRAY
DESCRIPTION Modified Hikkake Pattern
ADDITIONAL INFO

EXAMPLE CdlHikkakemod()

\subsection*{1.3.3.60 CdIHikkakemod 1}

\author{
CDLHIKKAKEMOD \\ Candlestick Pattern \\ Modified Hikkake Pattern
}
\begin{tabular}{ll} 
SYNTAX & CdlHikkakemod(ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Modified Hikkake Pattern \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & CdlHikkakemod(open, high, low, close)
\end{tabular}

\subsection*{1.3.3.61 CdIHomingpigeon 0}
CDLHOMINGPIGEONHoming Pigeon
SYNTAX CdIHomingpigeon()
RETURNS NUMERIC ARRAY

DESCRIPTION Homing Pigeon, The Homing Pigeon is the same as the Harami, except for the colour of the second day's body.

ADDITIONAL Homing Pigeon bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate Identification
A long black day is followed by another black day which gaps opposite the trend and is completely engulfed by the real body of the first day.

EXAMPLE CdlHomingpigeon()

\subsection*{1.3.3.62 CdIHomingpigeon 1}

\section*{CDLHOMINGPIGEON}

Homing Pigeon
\begin{tabular}{ll} 
SYNTAX & CdIHomingpigeon( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Homing Pigeon, The Homing Pigeon is the same as the Harami, except for the colour of \\
the second day's body.
\end{tabular}
\end{tabular}

ADDITIONAL Homing Pigeon bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate Identification
A long black day is followed by another black day which gaps opposite the trend and is completely engulfed by the real body of the first day.

EXAMPLE CdlHomingpigeon(open, high, low, close)

\subsection*{1.3.3.63 CdIIdentical3crows 0}

\author{
CDLIDENTICAL3CROWS \\ Identical Three Crows
}
SYNTAX CdIIdentical3crows()

RETURNS NUMERIC ARRAY
DESCRIPTION Identical Three Crows, The Three Identical Crows have the same criteria as the Three Black Crows.

ADDITIONAL Identical Three Crows Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
Three black days with each day opening where the previous day closed.
EXAMPLE CdIIdentical3crows()

\subsection*{1.3.3.64 CdIIdentical3crows 1}

\section*{CDLIDENTICAL3CROWS}

Identical Three Crows
Candlestick Pattern

SYNTAX CdIIdentical3crows( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Identical Three Crows, The Three Identical Crows have the same criteria as the Three Black Crows.

ADDITIONAL Identical Three Crows Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
Three black days with each day opening where the previous day closed.
EXAMPLE CdIIdentical3crows(open, high, low, close)

\subsection*{1.3.3.65 CdIInneck 0}
CDLINNECK
Candlestick Pattern
In-Neck Pattern

SYNTAX CdIInneck()
RETURNS NUMERIC ARRAY
DESCRIPTION In-Neck Pattern, The In Neck pattern is almost a Meeting Line pattern.
ADDITIONAL In Neck Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a long white day that gaps down at the open and closes at the same price as the black day.

EXAMPLE CdIInneck()

\subsection*{1.3.3.66 CdIInneck 1}

\section*{CDLINNECK}

In-Neck Pattern

SYNTAX CdIInneck( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION In-Neck Pattern, The In Neck pattern is almost a Meeting Line pattern.
ADDITIONAL In Neck Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a long white day that gaps down at the open and closes at the same price as the black day.

EXAMPLE CdIInneck(open, high, low, close)

\subsection*{1.3.3.67 CdIInvertedhammer 0}

\section*{CDLINVERTEDHAMMER}

Inverted Hammer

SYNTAX CdIInvertedhammer()
RETURNS NUMERIC ARRAY
DESCRIPTION Inverted Hammer, The Inverted Hammer is comprised of one candle.
ADDITIONAL Inverted Hammer Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A small real body forms at the lower end of the trading range. The upper shadow is usually no more than twice as long as the real body and there is no or almost no lower shadow.

EXAMPLE CdIInvertedhammer()

\subsection*{1.3.3.68 CdIInvertedhammer 1}

\section*{CDLINVERTEDHAMMER}

Inverted Hammer

SYNTAX CdIInvertedhammer( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Inverted Hammer, The Inverted Hammer is comprised of one candle.
ADDITIONAL Inverted Hammer Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: low/moderate
Identification
A small real body forms at the lower end of the trading range. The upper shadow is usually no more than twice as long as the real body and there is no or almost no lower shadow.

EXAMPLE CdIInvertedhammer(open, high, low, close)

\subsection*{1.3.3.69 CdIKicking 0}

\section*{CDLKICKING}

Kicking

SYNTAX CdlKicking()
RETURNS NUMERIC ARRAY
DESCRIPTION Kicking, The Kicker signal is the most powerful signal of all.
ADDITIONAL Kicking Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A White Marubuzo (opens at low and closes at high) is followed by a Black Marubuzo (opens at high and closes at low) that gaps down.
Kicking Bullish
Signal: Bullish
Pattern: reversal
Reliability: high
Identification:
A Black Marubuzo (open is the high of the day and the close is the low of the day) day is followed by a White Marubuzo (open is the low of the day and the close is the high of the day) day that gaps in the opposite direction.

EXAMPLE CdlKicking()

\subsection*{1.3.3.70 CdIKicking 1}

\section*{CDLKICKING} day) day that gaps in the opposite direction.

EXAMPLE CdlKicking(open, high, low, close)

\subsection*{1.3.3.71 CdIKickingbylength 0}

\author{
CDLKICKINGBYLENGTH \\ Candlestick Pattern \\ Kicking - bull/bear
}

SYNTAX CdIKickingbylength()
RETURNS NUMERIC ARRAY
DESCRIPTION Kicking - bull/bear determined by the longer marubozu, The Kicker signal is the most powerful signal of all.

ADDITIONAL
INFO
EXAMPLE CdlKickingbylength()

\subsection*{1.3.3.72 CdIKickingbylength 1}

\section*{CDLKICKINGBYLENGTH}

Candlestick Pattern
Kicking - bull/bear

SYNTAX CdIKickingbylength( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Kicking - bull/bear determined by the longer marubozu, The Kicker signal is the most powerful signal of all.

ADDITIONAL
INFO
EXAMPLE CdlKickingbylength(open, high, low, close)

\subsection*{1.3.3.73 CdILadderbottom 0}

CDLLADDERBOTTOM
Ladder Bottom

SYNTAX CdILadderbottom()
RETURNS NUMERIC ARRAY
DESCRIPTION Ladder Bottom, The downtrend is finishing with four consecutive black candles, each closing lower than the previous day.

ADDITIONAL Ladder Bottom Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
Three black days with successive lower opens and lower closes. Then a black day forms with some noticeably upper shadow. The final day is a white day that gaps against the trend and opens above the body of the fourth day.

EXAMPLE CdILadderbottom()

\subsection*{1.3.3.74 CdILadderbottom 1}

CDLLADDERBOTTOM
Ladder Bottom

SYNTAX CdILadderbottom( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Ladder Bottom, The downtrend is finishing with four consecutive black candles, each closing lower than the previous day.

ADDITIONAL Ladder Bottom Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
Three black days with successive lower opens and lower closes. Then a black day forms with some noticeably upper shadow. The final day is a white day that gaps against the trend and opens above the body of the fourth day.

EXAMPLE CdILadderbottom(open, high, low, close)

\subsection*{1.3.3.75 CdILongleggeddoji 0}

\author{
CDLLONGLEGGEDDOJI \\ Long Legged Doji
}

SYNTAX CdILongleggeddoji()
RETURNS NUMERIC ARRAY
DESCRIPTION Long Legged Doji, The Long-legged Doji is composed of long upper and lower shadows.
\begin{tabular}{ll} 
ADDITIONAL & Long Legged Doji \\
INFO & Signal: Indecision \\
& Pattern: Reversal \\
& Reliability: Medium \\
& Identification: \\
& Long Legged Doji is characterized by very long shadows. It is an important reversal \\
signal. \\
& Bullish Long Legged Doji \\
& Signal: Bullish \\
& Pattern: Reversal \\
& Reliability: Medium \\
& Identification: \\
& Long Legged Doji is a doji characterized with very long shadows. It shows the indecision \\
& of the buyers and sellers. It is one of the important reversal signals. \\
& Bearish Long Legged Doji \\
& Signal: Bearish \\
& Pattern: Reversal \\
& Reliability: Medium \\
& Identification: \\
& Long Legged Doji is a doji characterized by very long shadows. It shows the indecision of \\
& the buyers and sellers and it is an important reversal signal.
\end{tabular}

EXAMPLE CdlLongleggeddoji()

\subsection*{1.3.3.76 CdILongleggeddoji 1}

\author{
CDLLONGLEGGEDDOJI \\ Long Legged Doji
}

SYNTAX CdILongleggeddoji( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Long Legged Doji, The Long-legged Doji is composed of long upper and lower shadows.
\begin{tabular}{ll} 
ADDITIONAL & Long Legged Doji \\
INFO & Signal: Indecision \\
& Pattern: Reversal \\
& Reliability: Medium \\
& Identification: \\
& Long Legged Doji is characterized by very long shadows. It is an important reversal \\
signal. \\
& Bullish Long Legged Doji \\
& Signal: Bullish \\
& Pattern: Reversal \\
& Reliability: Medium \\
& Identification: \\
& Long Legged Doji is a doji characterized with very long shadows. It shows the indecision \\
& of the buyers and sellers. It is one of the important reversal signals. \\
& Bearish Long Legged Doji \\
& Signal: Bearish \\
& Pattern: Reversal \\
& Reliability: Medium \\
& Identification: \\
& Long Legged Doji is a doji characterized by very long shadows. It shows the indecision of \\
& the buyers and sellers and it is an important reversal signal.
\end{tabular}

EXAMPLE CdlLongleggeddoji(open, high, low, close)

\subsection*{1.3.3.77 CdILongline 0}
CDLLONGLINECandlestick PatternLong Line Candle
SYNTAX CdILongline()
RETURNS NUMERIC ARRAY
DESCRIPTION Long Line Candle, A long day (LONGLINE) represents a large price move from open toclose.
ADDITIONAL Long Line CandleINFO Signal: IndecisionPattern: ReversalReliability: Low
Identification:
A long day (Long Line Candle) represents a large price move from open to close.
EXAMPLE CdILongline()

\subsection*{1.3.3.78 CdILongline 1}

\section*{CDLLONGLINE}

Candlestick Pattern
Long Line Candle

SYNTAX CdILongline( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Long Line Candle, A long day (LONGLINE) represents a large price move from open to close.

ADDITIONAL Long Line Candle
INFO Signal: Indecision
Pattern: Reversal
Reliability: Low
Identification:
A long day (Long Line Candle) represents a large price move from open to close.
EXAMPLE CdILongline(open, high, low, close)

\subsection*{1.3.3.79 CdIMarubozu 0}

\section*{CDLMARUBOZU}

Marubozu

DESCRIPTION Marubozu, in Japanese, Marubozu means close cropped or close-cut.
ADDITIONAL Black Marubozu
INFO Signal: Bearish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The Black Marubozu is a single candlestick pattern characterized by a long black body. It does not have any shadows on either end. It is an extremely strong bearish candlestick pattern.
White Marubozu
Signal: Bullish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The White Marubozu is a single candlestick pattern characterized with a long white body having no shadows on either end. It is an extremely strong bullish candlestick pattern.

EXAMPLE CdlMarubozu()

\subsection*{1.3.3.80 CdIMarubozu 1}

CDLMARUBOZU
Marubozu

DESCRIPTION Marubozu, in Japanese, Marubozu means close cropped or close-cut.
ADDITIONAL Black Marubozu
INFO Signal: Bearish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The Black Marubozu is a single candlestick pattern characterized by a long black body. It does not have any shadows on either end. It is an extremely strong bearish candlestick pattern.
White Marubozu
Signal: Bullish
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The White Marubozu is a single candlestick pattern characterized with a long white body having no shadows on either end. It is an extremely strong bullish candlestick pattern.

EXAMPLE CdlMarubozu(open, high, low, close)

\subsection*{1.3.3.81 CdIMatchinglow 0}

\section*{CDLMATCHINGLOW}

Matching Low

SYNTAX CdIMatchinglow()
RETURNS NUMERIC ARRAY
DESCRIPTION Matching Low, The Matching Low pattern is similar to the Homing Pigeon patter, the exception being that the two days of the pattern close on their lows, at the same level.

ADDITIONAL Matching Low Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by another black day with equivalent closes both days.
EXAMPLE CdlMatchinglow()

\subsection*{1.3.3.82 CdIMatchinglow 1}

\section*{CDLMATCHINGLOW}

Matching Low

SYNTAX CdIMatchinglow( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Matching Low, The Matching Low pattern is similar to the Homing Pigeon patter, the exception being that the two days of the pattern close on their lows, at the same level.

ADDITIONAL Matching Low Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by another black day with equivalent closes both days.
EXAMPLE CdlMatchinglow(open, high, low, close)

\subsection*{1.3.3.83 CdIMathold 0}

CDLMATHOLD
Candlestick Pattern
Mat Hold

SYNTAX CdIMathold( ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Mat Hold, The pattern appears during an uptrend, which is further confirmed by the first long white candlestick.

ADDITIONAL Mat Hold Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: high
Identification
A long white day in an uptrend is followed by a relatively small black day that gaps in the direction of the trend. The next two days continue the brief pullback and are small days that stay within the range of the first day. The fifth day is a long white day that closes above the close of the first day and continues the uptrend.

EXAMPLE CdIMathold(14)

\subsection*{1.3.3.84 CdIMathold 1}

CDLMATHOLD
Mat Hold
SYNTAX \begin{tabular}{l} 
CdIMathold( ARRAY open, ARRAY high, ARRAY low, ARRAY close, ARRAY \\
penetration)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Mat Hold, The pattern appears during an uptrend, which is further confirmed by the first long white candlestick.

ADDITIONAL Mat Hold Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: high
Identification
A long white day in an uptrend is followed by a relatively small black day that gaps in the direction of the trend. The next two days continue the brief pullback and are small days that stay within the range of the first day. The fifth day is a long white day that closes above the close of the first day and continues the uptrend.

EXAMPLE CdlMathold(open, high, low, close, 14)

\subsection*{1.3.3.85 CdIMorningdojistar 0}

\section*{CDLMORNINGDOJISTAR}

Morning Doji Star

SYNTAX CdIMorningdojistar( ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Morning Doji Star, A three day bullish reversal pattern that is very similar to the Morning Star.

ADDITIONAL Morning Doji Star Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by a Doji that gaps in the direction of the trend. The third day is a white day which closes in the top half of the black day.

EXAMPLE CdlMorningdojistar(14)

\subsection*{1.3.3.86 CdIMorningdojistar 1}

\section*{CDLMORNINGDOJISTAR}

Morning Doji Star
Candlestick Pattern
\(\begin{array}{ll}\text { SYNTAX } & \begin{array}{l}\text { CdIMorningdojistar( ARRAY open, ARRAY high, ARRAY low, ARRAY close, } \\ \text { ARRAY penetration) }\end{array} \\ \text { RETURNS } & \text { NUMERIC ARRAY } \\ \text { DESCRIPTION } & \text { Morning Doji Star, A three day bullish reversal pattern that is very similar to the Morning }\end{array}\) Star.

ADDITIONAL Morning Doji Star Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by a Doji that gaps in the direction of the trend. The third day is a white day which closes in the top half of the black day.

EXAMPLE CdlMorningdojistar(open, high, low, close, 14)

\subsection*{1.3.3.87 CdIMorningstar 0}
CDLMORNINGSTARMorning Star
SYNTAX CdIMorningstar( ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Morning Star, The Morning Star is a bottom reversal signal.
ADDITIONAL Morning Star Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by a small day that gaps in the direction of the trend. Thethird day is a white day which closes in the top half of the black day.
EXAMPLE CdlMorningstar(14)

\subsection*{1.3.3.88 CdIMorningstar 1}
CDLMORNINGSTARMorning Star
SYNTAX CdIMorningstar ( ARRAY open, ARRAY high, ARRAY low, ARRAY close, ARRAY penetration)
RETURNS NUMERIC ARRAY
DESCRIPTION Morning Star, The Morning Star is a bottom reversal signal.
ADDITIONAL Morning Star Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: high
Identification
A long black day is followed by a small day that gaps in the direction of the trend. Thethird day is a white day which closes in the top half of the black day.
EXAMPLE CdlMorningstar(open, high, low, close, 14)

\subsection*{1.3.3.89 CdIOnneck 0}

\section*{CDLONNECK}

Candlestick Pattern
On-Neck Pattern

SYNTAX CdIOnneck()
RETURNS NUMERIC ARRAY
DESCRIPTION On-Neck Pattern, The On Neck Line pattern is almost a 'meeting line pattern', but the critical term is 'almost'.

ADDITIONAL On Neck Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a long white day that gaps down at the open and closes below the close of the black day.

\author{
EXAMPLE CdIOnneck()
}

\subsection*{1.3.3.90 CdIOnneck 1}

CDLONNECK
Candlestick Pattern
On-Neck Pattern

SYNTAX CdIOnneck( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION On-Neck Pattern, The On Neck Line pattern is almost a 'meeting line pattern', but the critical term is 'almost'.

ADDITIONAL On Neck Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a long white day that gaps down at the open and closes below the close of the black day.

EXAMPLE CdlOnneck(open, high, low, close)

\subsection*{1.3.3.91 CdIPiercing 0}
CDLPIERCING
Piercing Pattern

SYNTAX CdIPiercing()
RETURNS NUMERIC ARRAY
DESCRIPTION Piercing Pattern, The Piercing Pattern is composed of a two-candle formation in a down trending market.

ADDITIONAL Piercing Line Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
A long black day is followed by a white day that gaps below the black dayï \({ }_{6} 1 / 2\) s low and closes within and above the midpoint of the black dayï \(\mathrm{b}^{1 / 2}\) s body.

EXAMPLE CdlPiercing()

\subsection*{1.3.3.92 CdIPiercing 1}

\section*{CDLPIERCING}

Piercing Pattern

SYNTAX CdIPiercing (ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Piercing Pattern, The Piercing Pattern is composed of a two-candle formation in a down trending market.

ADDITIONAL Piercing Line Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate
Identification
A long black day is followed by a white day that gaps below the black dayï̈ \(1 / 2 \mathrm{~s}\) low and closes within and above the midpoint of the black dayï \(\ddot{i}^{1 / 2}\) s body.

EXAMPLE CdlPiercing(open, high, low, close)

\subsection*{1.3.3.93 CdIRickshawman 0}

\section*{CDLRICKSHAWMAN}

Rickshaw Man

DESCRIPTION Rickshaw Man, Rickshaw man is a specific type of long-legged doji where the open and close are in the middle of the price range.

ADDITIONAL Rickshaw Man
INFO Signal: Indecision
Pattern: Reversal
Reliability: Medium
Identification:
Rickshaw man is a specific type of long-legged doji where the open and close are in the middle of the price range.

EXAMPLE CdlRickshawman()

\subsection*{1.3.3.94 CdIRickshawman 1}

CDLRICKSHAWMAN
Rickshaw Man
SYNTAX CdIRickshawman( ARRAY open, ARRAY high, ARRAY low, ARRAY close)

RETURNS NUMERIC ARRAY
DESCRIPTION Rickshaw Man, Rickshaw man is a specific type of long-legged doji where the open and close are in the middle of the price range.

ADDITIONAL Rickshaw Man
INFO Signal: Indecision
Pattern: Reversal
Reliability: Medium
Identification:
Rickshaw man is a specific type of long-legged doji where the open and close are in the middle of the price range.

EXAMPLE CdlRickshawman(open, high, low, close)

\subsection*{1.3.3.95 CdIRisefall3methods 0}

CDLRISEFALL3METHODS
Rising/Falling Three Methods
Candlestick Pattern

SYNTAX CdIRisefall3methods()
RETURNS NUMERIC ARRAY
DESCRIPTION Rising/Falling Three Methods, The Falling Three Method is basically the opposite of the Rising Three Method, The market has been in a downtrend.

ADDITIONAL Rising Three Methods Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: high
Identification
A long white day in an uptrend is followed by three relatively small candles that move opposite the overall trend but stay within the range of the first day. The fifth day is a long white day that closes above the close of the first day and continues the uptrend.
Fallling Three Methods Bearish
Signal: Bearish
Pattern: continuation
Reliability: high
Identification
A long black day in a downtrend is followed by three relatively small candles that move opposite the overall trend but stay within the range of the first day. The fifth day is a long black day that closes below the close of the first day and continues the downtrend.

EXAMPLE CdlRisefall3methods()

\subsection*{1.3.3.96 CdIRisefall3methods 1}

CDLRISEFALL3METHODS
Candlestick Pattern
Rising/Falling Three Methods

SYNTAX CdIRisefall3methods( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Rising/Falling Three Methods, The Falling Three Method is basically the opposite of the Rising Three Method, The market has been in a downtrend.

ADDITIONAL Rising Three Methods Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: high
Identification
A long white day in an uptrend is followed by three relatively small candles that move opposite the overall trend but stay within the range of the first day. The fifth day is a long white day that closes above the close of the first day and continues the uptrend.
Fallling Three Methods Bearish
Signal: Bearish
Pattern: continuation
Reliability: high
Identification
A long black day in a downtrend is followed by three relatively small candles that move opposite the overall trend but stay within the range of the first day. The fifth day is a long black day that closes below the close of the first day and continues the downtrend.

EXAMPLE CdlRisefall3methods(open, high, low, close)

\subsection*{1.3.3.97 CdISeparatinglines \(\mathbf{0}\)}

\section*{CDLSEPARATINGLINES}

Separating Lines

SYNTAX CdISeparatinglines()
RETURNS NUMERIC ARRAY
DESCRIPTION Separating Lines, You can identify it from the following points: The first day is a long
white candle.
ADDITIONAL Separating Lines Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: low
Identification
A black day is followed by a white day that has the same opening price.
Separating Lines Bearish
Signal: Bearish
Pattern: continuation
Reliability: low
Identification
A white day is followed by a black day that has the same opening price.
EXAMPLE CdlSeparatinglines()

\subsection*{1.3.3.98 CdISeparatinglines 1}

\section*{CDLSEPARATINGLINES}

Separating Lines
SYNTAX CdISeparatinglines( ARRAY open, ARRAY high, ARRAY low, ARRAY close)

RETURNS NUMERIC ARRAY
DESCRIPTION Separating Lines, You can identify it from the following points: The first day is a long white candle.

ADDITIONAL Separating Lines Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: low
Identification
A black day is followed by a white day that has the same opening price.
Separating Lines Bearish
Signal: Bearish
Pattern: continuation
Reliability: low
Identification
A white day is followed by a black day that has the same opening price.
EXAMPLE CdlSeparatinglines(open, high, low, close)

\subsection*{1.3.3.99 CdIShootingstar 0}
CDLSHOOTINGSTARShooting Star
SYNTAX CdIShootingstar()
RETURNS NUMERIC ARRAY
DESCRIPTION Shooting Star, The Shooting Star is comprised of one candle.
ADDITIONAL Shooting Star BearishINFO Signal: BearishPattern: reversalReliability: low/moderateIdentificationA small body forms at the lower end of the trading range. The upper shadow is usuallylong while the lower shadow is small or almost nonexistent.
EXAMPLE CdlShootingstar()

\subsection*{1.3.3.100 CdIShootingstar 1}

\section*{CDLSHOOTINGSTAR}

Shooting Star

\subsection*{1.3.3.101 CdIShortline 0}
CDLSHORTLINE Candlestick Pattern Short Line Candle
SYNTAX CdIShortline()
RETURNS NUMERIC ARRAY
DESCRIPTION Short Line Candle, Short days (SHORTLINES) can be interpreted by the same analyticalprocess of the long candles.
ADDITIONAL Short Line Candle
INFO Signal: IndecisionPattern: ReversalReliability: Low
Identification:
Short days (Short Line Candle) represents a small price move from open to close.
EXAMPLE CdlShortline()

\subsection*{1.3.3.102 CdIShortline 1}

CDLSHORTLINE
Candlestick Pattern
Short Line Candle

SYNTAX CdIShortline( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Short Line Candle, Short days (SHORTLINES) can be interpreted by the same analytical process of the long candles.

ADDITIONAL Short Line Candle
INFO Signal: Indecision
Pattern: Reversal
Reliability: Low
Identification:
Short days (Short Line Candle) represents a small price move from open to close.
EXAMPLE CdIShortline(open, high, low, close)

\subsection*{1.3.3.103 CdISpinningtop 0}

CDLSPINNINGTOP
Spinning Top

SYNTAX CdISpinningtop()
RETURNS NUMERIC ARRAY
DESCRIPTION Spinning Top, spinning Tops are depicted with small bodies relative to the shadows.
ADDITIONAL White Spinning Top
INFO Signal: Indecision
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The White Spinning Top is a single candlestick pattern. Its shape is a small white body with upper and lower shadows that have a greater length than the body's length.
Black Spinning Top
Signal: Indecision
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The Black Spinning Top is a single candlestick pattern. Its shape is a small black body with upper and lower shadows having a greater length than the body's length.

EXAMPLE CdlSpinningtop()

\subsection*{1.3.3.104 CdISpinningtop 1}

CDLSPINNINGTOP
Spinning Top

SYNTAX CdISpinningtop( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Spinning Top, spinning Tops are depicted with small bodies relative to the shadows.
ADDITIONAL White Spinning Top
INFO Signal: Indecision
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The White Spinning Top is a single candlestick pattern. Its shape is a small white body with upper and lower shadows that have a greater length than the body's length.
Black Spinning Top
Signal: Indecision
Pattern: Reversal/Continuation
Reliability: Low
Identification:
The Black Spinning Top is a single candlestick pattern. Its shape is a small black body with upper and lower shadows having a greater length than the body's length.

EXAMPLE CdlSpinningtop(open, high, low, close)

\subsection*{1.3.3.105 CdIStalledpattern 0}
\begin{tabular}{ll} 
CDLSTALLEDPATTERN & Candlestick Pattern \\
Stalled Pattern
\end{tabular}

SYNTAX CdIStalledpattern()
RETURNS NUMERIC ARRAY
DESCRIPTION Stalled Pattern, Another pattern close to the Three White Soldiers pattern is the Stalled Pattern (commonly known as the Deliberation pattern).

ADDITIONAL Stalled Pattern or Deliberation pattern
INFO Signal: Bearish
Pattern: Reversal
Reliability: Medium
Identification:
The Bearish Deliberation Pattern is a derivative of the Bearish Three White Soldiers Pattern. This pattern also shows a weakness similar to the Bearish Advance Block Pattern since it becomes weaker in a short period of time. However here the weakness occurs all at once on the third day. The small third body of the pattern shows that the rally is losing strength and a reversal is possible.

EXAMPLE CdIStalledpattern()

\subsection*{1.3.3.106 CdIStalledpattern 1}

\section*{CDLSTALLEDPATTERN}

Stalled Pattern

SYNTAX CdIStalledpattern( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Stalled Pattern, Another pattern close to the Three White Soldiers pattern is the Stalled Pattern (commonly known as the Deliberation pattern).

ADDITIONAL Stalled Pattern or Deliberation pattern
INFO Signal: Bearish
Pattern: Reversal
Reliability: Medium
Identification:
The Bearish Deliberation Pattern is a derivative of the Bearish Three White Soldiers Pattern. This pattern also shows a weakness similar to the Bearish Advance Block Pattern since it becomes weaker in a short period of time. However here the weakness occurs all at once on the third day. The small third body of the pattern shows that the rally is losing strength and a reversal is possible.

EXAMPLE CdIStalledpattern(open, high, low, close)

\subsection*{1.3.3.107 CdISticksandwich 0}

\section*{CDLSTICKSANDWICH}

Stick Sandwich

SYNTAX CdISticksandwich()
RETURNS NUMERIC ARRAY
DESCRIPTION Stick Sandwich, The Stick Sandwich looks somewhat like an ice cream sandwich.
ADDITIONAL Bullish Stick Sandwich
INFO Signal: Bullish
Pattern: Reversal
Reliability: Medium
Identification:
The Bullish Stick Sandwich Pattern is characterized by consecutive higher opens for three days, but results in an eventual close equal to the first day's close. It may warn that prices are now finding a support price. We may then see a reversal from this support level.

EXAMPLE CdISticksandwich()

\subsection*{1.3.3.108 CdISticksandwich 1}

CDLSTICKSANDWICH
Stick Sandwich

SYNTAX CdISticksandwich( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Stick Sandwich, The Stick Sandwich looks somewhat like an ice cream sandwich.
ADDITIONAL Bullish Stick Sandwich
INFO Signal: Bullish
Pattern: Reversal
Reliability: Medium
Identification:
The Bullish Stick Sandwich Pattern is characterized by consecutive higher opens for three days, but results in an eventual close equal to the first day's close. It may warn that prices are now finding a support price. We may then see a reversal from this support level.

EXAMPLE CdISticksandwich(open, high, low, close)

\subsection*{1.3.3.109 CdITakuri 0}

\section*{CDLTAKURI}

Takuri

SYNTAX CdITakuri()
RETURNS NUMERIC ARRAY
DESCRIPTION Takuri (Dragonfly Doji with very long lower shadow) : This function is contained within the Pattern Recognition set of indicators.

ADDITIONAL Dragonfly Doji with very long lower shadow INFO

EXAMPLE CdITakuri()

\subsection*{1.3.3.110 CdITakuri 1}

CDLTAKURI
Takuri

SYNTAX CdITakuri( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Takuri (Dragonfly Doji with very long lower shadow) : This function is contained within the Pattern Recognition set of indicators.

ADDITIONAL Dragonfly Doji with very long lower shadow INFO

EXAMPLE CdITakuri(open, high, low, close)

\subsection*{1.3.3.111 CdITasukigap 0}
CDLTASUKIGAP
SYNTAX CdITasukigap()
RETURNS NUMERIC ARRAY
DESCRIPTION Tasuki Gap, The Upside Tasuki Gap is found in a rising trend.
ADDITIONAL Downside Tasuki Gap Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a second long black day that gaps in the direction of thetrend. The third day is white and opens within the body of the second day and closeswithin the gap.Upside Tasuki Gap Bullish
Signal: Bullish
Pattern: continuation
Reliability: moderate
IdentificationA long white day is followed by a second long white day that gaps in the direction of thetrend. The third day is black and opens within the body of the second day and closeswithin the gap.
EXAMPLE CdITasukigap()

\subsection*{1.3.3.112 CdITasukigap 1}

CDLTASUKIGAP
Tasuki Gap

SYNTAX CdITasukigap (ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Tasuki Gap, The Upside Tasuki Gap is found in a rising trend.
ADDITIONAL Downside Tasuki Gap Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a second long black day that gaps in the direction of the trend. The third day is white and opens within the body of the second day and closes within the gap.
Upside Tasuki Gap Bullish
Signal: Bullish
Pattern: continuation
Reliability: moderate
Identification
A long white day is followed by a second long white day that gaps in the direction of the trend. The third day is black and opens within the body of the second day and closes within the gap.

EXAMPLE CdITasukigap(open, high, low, close)

\subsection*{1.3.3.113 CdIThrusting 0}
CDLTHRUSTINGCandlestick PatternThrusting Pattern
SYNTAX CdIThrusting()
RETURNS NUMERIC ARRAY
DESCRIPTION Thrusting Pattern, The Thrusting pattern is almost an 'On Neck' or an 'In Neck' pattern andresembles the Meeting Line pattern, also.
ADDITIONAL Thrusting Bearish
INFO Signal: BearishPattern: continuationReliability: lowIdentificationA black day is followed by a white day which gaps in the direction of the trend and closesbelow the midpoint of the black day.
EXAMPLE CdlThrusting()

\subsection*{1.3.3.114 CdIThrusting 1}

\section*{CDLTHRUSTING}

Thrusting Pattern

DESCRIPTION Thrusting Pattern, The Thrusting pattern is almost an 'On Neck' or an 'In Neck' pattern and resembles the Meeting Line pattern, also.

ADDITIONAL Thrusting Bearish
INFO Signal: Bearish
Pattern: continuation
Reliability: low
Identification
A black day is followed by a white day which gaps in the direction of the trend and closes below the midpoint of the black day.

EXAMPLE CdIThrusting(open, high, low, close)

\subsection*{1.3.3.115 CdITristar 0}
CDLTRISTAR
Tristar Pattern
SYNTAX CdITristar()

RETURNS NUMERIC ARRAY
DESCRIPTION Tristar Pattern, The Tri Star pattern is relatively rare.
ADDITIONAL
INFO
EXAMPLE CdITristar()

\subsection*{1.3.3.116 CdITristar 1}

CDLTRISTAR
Tristar Pattern

SYNTAX CdITristar( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Tristar Pattern, The Tri Star pattern is relatively rare.
ADDITIONAL
INFO
EXAMPLE CdITristar(open, high, low, close)

\subsection*{1.3.3.117 CdIUnique3river 0}

\author{
CDLUNIQUE3RIVER \\ Unique 3 River
}
SYNTAX CdIUnique3river()

RETURNS NUMERIC ARRAY
DESCRIPTION Unique 3 River, The Unique Three River Bottom is a bullish pattern, somewhat characteristic of the Morning Star Pattern.

ADDITIONAL Unique Three River Bottom Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate Identification
The first day is a long black day, followed by a Homing Pigeon whose lower shadow makes a new low. The last day is small and white, and closes below the second dayï \(i^{1 / 2}\) s close.

EXAMPLE CdIUnique3river()

\subsection*{1.3.3.118 CdIUnique3river 1}

\section*{CDLUNIQUE3RIVER}

Unique 3 River

SYNTAX CdIUnique3river( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Unique 3 River, The Unique Three River Bottom is a bullish pattern, somewhat characteristic of the Morning Star Pattern.

ADDITIONAL Unique Three River Bottom Bullish
INFO Signal: Bullish
Pattern: reversal
Reliability: moderate Identification
The first day is a long black day, followed by a Homing Pigeon whose lower shadow makes a new low. The last day is small and white, and closes below the second dayï \(i^{1 / 2}\) s close.

EXAMPLE CdIUnique3river(open, high, low, close)

\subsection*{1.3.3.119 CdIUpsidegap2crows 0}

\author{
CDLUPSIDEGAP2CROWS \\ Upside Gap Two Crows
}

SYNTAX CdIUpsidegap2crows()
RETURNS NUMERIC ARRAY
DESCRIPTION Upside Gap Two Crows, The Upside Gap Two Crows is a three-day pattern.
ADDITIONAL Upside Gap Two Crows Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a black candle which gaps in the direction of the trend.
The final day engulfs the small black day and closes within the gap of the first two days.
EXAMPLE CdlUpsidegap2crows()

\subsection*{1.3.3.120 CdIUpsidegap2crows 1}

\section*{CDLUPSIDEGAP2CROWS}

Upside Gap Two Crows

SYNTAX CdIUpsidegap2crows( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Upside Gap Two Crows, The Upside Gap Two Crows is a three-day pattern.
ADDITIONAL Upside Gap Two Crows Bearish
INFO Signal: Bearish
Pattern: reversal
Reliability: high
Identification
A long white day is followed by a black candle which gaps in the direction of the trend.
The final day engulfs the small black day and closes within the gap of the first two days.
EXAMPLE CdIUpsidegap2crows(open, high, low, close)

\subsection*{1.3.3.121 CdIXsidegap3methods 0}

CDLXSIDEGAP3METHODS
Upside/Downside Gap Three Methods

SYNTAX CdIXsidegap3methods()
RETURNS NUMERIC ARRAY
DESCRIPTION Upside/Downside Gap Three Methods, the Bullish Upside Gap Three Methods Pattern, the market is in a strong bullish mood.

ADDITIONAL Upside Gap Three Methods Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: moderate
Identification
A long white day is followed by a second long white day that gaps in the direction of the trend. The third day is black and fills the gap between the first two days.
Downside Gap Three Methods Bearish
Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a second long black day that gaps in the direction of the trend. The third day is white and fills the gap between the first two days.

EXAMPLE CdIXsidegap3methods()

\subsection*{1.3.3.122 CdIXsidegap3methods 1}

\author{
CDLXSIDEGAP3METHODS \\ Upside/Downside Gap Three Methods
}

SYNTAX CdIXsidegap3methods( ARRAY open, ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Upside/Downside Gap Three Methods, the Bullish Upside Gap Three Methods Pattern, the market is in a strong bullish mood.

ADDITIONAL Upside Gap Three Methods Bullish
INFO Signal: Bullish
Pattern: continuation
Reliability: moderate
Identification
A long white day is followed by a second long white day that gaps in the direction of the trend. The third day is black and fills the gap between the first two days.
Downside Gap Three Methods Bearish
Signal: Bearish
Pattern: continuation
Reliability: moderate
Identification
A long black day is followed by a second long black day that gaps in the direction of the trend. The third day is white and fills the gap between the first two days.

EXAMPLE CdIXsidegap3methods(open, high, low, close)

\subsection*{1.3.4 Charting}

\subsection*{1.3.4.1 Plot}

PLOT
Plot

SYNTAX Plot (ARRAY array, ARRAY description, ENUM color, ENUM chart type, ENUM style)

RETURNS
DESCRIPTION Plot a time-series
ADDITIONAL
INFO
EXAMPLE Plot(rsi(14), "RSI", colorBlack, chartLine, styleOwnScale)

\subsection*{1.3.4.2 Plot1}
PLOT1
Plot

SYNTAX Plot1( ARRAY array one, ARRAY array two, ARRAY description1, ARRAY description2, ENUM fillcolor, ENUM graphonecolor, ENUM graphtwocolor, ENUM chart type, ENUM style)

RETURNS
DESCRIPTION Plot two time-series
ADDITIONAL
INFO
EXAMPLE Plot1(BbandsUpper(14, 2, 2,_MaSma), BbandSlower(14, 2, 2,_MaSma), "BB UP", "BB LOW", colorRed|20|colorRed|20|0, colorTransparent, colorTransparent, chartLine, StyleSymbolNone)

\subsection*{1.3.4.3 PlotCandleStick}
PLOTCANDLESTICK
Plot CandleStick
\begin{tabular}{ll} 
SYNTAX & PlotCandleStick(ARRAY description, ENUM color, ENUM style) \\
RETURNS & \\
DESCRIPTION & Plot a symbol quotes \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & PlotCandleStick("CandleStick", colorBlack, StyleSymbolNone)
\end{tabular}

\subsection*{1.3.4.4 PlotCandleStick1}
PLOTCANDLESTICK1
Plot CandleStick

SYNTAX PlotCandleStick1( ARRAY open, ARRAY high, ARRAY low, ARRAY close, ARRAY description, ENUM color, ENUM style)

RETURNS
DESCRIPTION Plot a symbol quotes
ADDITIONAL
INFO
EXAMPLE PlotCandleStick1(open, high, low, close, "CandleStick", colorBlack, StyleSymbolNone)

\subsection*{1.3.4.5 PlotFixed}
PLOTFIXED

DESCRIPTION Draw a fixed graph (see tutorial)
ADDITIONAL
INFO
EXAMPLE \(\quad\) PlotFixed(iff(GapUp(), 1, iff(GapDown(), 2, 0)), 1, "", iCount, "Number of No Gaps Gap Up - Gap Down", colorBlack, ChartBar, StyleSymbolNone)

\subsection*{1.3.4.6 PlotSymbol}
PLOTSYMBOL
Plot Symbol

SYNTAX PlotSymbol( ARRAY array, ARRAY description, ARRAY factor, ARRAY margin, ENUM topbottom, ENUM color, ENUM border color, ENUM back color, ENUM plot symbol)

RETURNS
DESCRIPTION Draw a symbol when the value of an element of the ARRAY is different from 0
ADDITIONAL
INFO
EXAMPLE PlotSymbol(volume > 2 * sma(volume, 20), "Rise volume", 1, 1, AboveHigh, colorRed, colorBlack, colorBlack, PlotSymbolCircle)

\subsection*{1.3.4.7 Print}
PRINT
Print To Output Charting

\section*{SYNTAX Print( ARRAY text)}

RETURNS
DESCRIPTION Set the outpout window so it display text depending on the selected date
ADDITIONAL
INFO
EXAMPLE Print("Hello")

\subsection*{1.3.4.8 PrintChart}
PRINTCHARTPrint Chart color, ENUM border color, ENUM back color, ARRAY alpha)

RETURNS
DESCRIPTION Draw a string
ADDITIONAL
INFO
EXAMPLE PrintChart("Close :".close, "Close Price", TopLeft, colorRed, colorBlack, colorBlack, 255)
1.3.4.9 SetMaxScale
SETMAXSCALE
Set the maximum chart scale

\section*{SYNTAX SetMaxScale( ARRAY max)}

RETURNS
DESCRIPTION Set maximum chart scale
ADDITIONAL
INFO
EXAMPLE SetMaxScale(100)
1.3.4.10 SetMinScale
SETMINSCALESet the minimum chart scale
SYNTAX SetMinScale( ARRAY min)
RETURNS
DESCRIPTION Set minimum chart scale
ADDITIONALINFO
EXAMPLE SetMinScale(0)

\subsection*{1.3.4.11 SetScale}

SETSCALE
Set the chart scale

SYNTAX SetScale( ARRAY min, ARRAY max)
RETURNS
DESCRIPTION Set chart scale
ADDITIONAL INFO

EXAMPLE \(\quad \operatorname{SetScale}(0,100)\)

\subsection*{1.3.4.12 UpdateColor}

\author{
UPDATECOLOR \\ Update Last Chart Color
}

SYNTAX UpdateColor( ARRAY condition, ENUM color)
RETURNS
DESCRIPTION Set a different color to each bar or line
ADDITIONAL
INFO
EXAMPLE UpdateColor(volume >0, colorGreen)

\subsection*{1.3.5 Columns}

\subsection*{1.3.5.1 AddColumn 0}

\author{
ADDCOLUMN \\ Columns \\ Add column
}

SYNTAX AddColumn( ARRAY column name, ARRAY variable)
RETURNS
DESCRIPTION Create a numeric column for the screener or the watch-list
ADDITIONAL
INFO
EXAMPLE AddColumn("Column1", rsi(14))

\subsection*{1.3.5.2 AddColumn 1}
ADDCOLUMN
Columns
Add column

SYNTAX AddColumn( ARRAY column name, ARRAY variable)
RETURNS
DESCRIPTION Create a text column for the screener or the watch-list
ADDITIONAL
INFO
EXAMPLE AddColumn("Column1", Market())

\subsection*{1.3.6 Database}

\subsection*{1.3.6.1 GetData}
GETDATA
Database Field

SYNTAX GetData( STRING database name, STRING field name, ENUM type)
RETURNS NUMERIC ARRAY
DESCRIPTION Get a database field data
ADDITIONAL
INFO
EXAMPLE GetData("database_name", "field_name", LastData)

\subsection*{1.3.6.2 GetDataCount}

\author{
GETDATACOUNT \\ Database Field Count \\ Database
}

SYNTAX GetDataCount( STRING database name, STRING field name)
RETURNS NUMERIC ARRAY
DESCRIPTION Get the number of database elements data for each bar
ADDITIONAL
INFO
EXAMPLE GetDataCount("database_name", "field_name")

\subsection*{1.3.6.3 GetDataCountInside}

\author{
GETDATACOUNTINSIDE \\ Database \\ Database Field Index Count Inside
}

SYNTAX GetDataCountInside (STRING database name, STRING field name, ARRAY low, ARRAY high, ENUM periodtype)

RETURNS NUMERIC ARRAY
DESCRIPTION Get the number of database field elements for each bar and for the specified limits
ADDITIONAL
INFO
EXAMPLE GetDataCountInside("database_name", "field_name", 0, 10, P_Hour)

\subsection*{1.3.6.4 GetDataExtern}
GETDATAEXTERN
Database
Database field for a specified symbol

SYNTAX GetDataExtern( STRING database name, STRING field name, ARRAY type: 0 for lastdata; \(\mathbf{1}\) for zero; and \(\mathbf{2}\) for na, ARRAY symbol)

RETURNS NUMERIC ARRAY
DESCRIPTION Get a database field data for a specified symbol
ADDITIONAL
INFO
EXAMPLE GetDataExtern("Fundamental", "Mktcap", 0, "A")

\subsection*{1.3.6.5 GetDataIndex}
GETDATAINDEX
Database Field Index
\begin{tabular}{ll} 
SYNTAX & GetDataIndex( STRING database name, STRING field name, ARRAY index, \\
ENUM type)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Get an array from a database field, index parameter specify the index of the data (When using for example intraday database with an historical timeframe)

ADDITIONAL
INFO
EXAMPLE GetDataIndex("database_name", "field_name", 0, LastData)

\subsection*{1.3.6.6 GetDataIndexDP}

\section*{GETDATAINDEXDP}

Database Field Index Time

\section*{SYNTAX GetDataIndexDP( STRING database name, STRING field name, ARRAY index, ENUM periodtype)}

RETURNS NUMERIC ARRAY
DESCRIPTION Get an array representing Year or month or day or hour... for each database field item, index parameter specify the index of the data (When using for example intraday database with an historical timeframe)

ADDITIONAL
INFO
EXAMPLE GetDataIndexDP("database_name", "field_name", 0, P_Hour)

\subsection*{1.3.6.7 GetDataInside}

\section*{GETDATAINSIDE}

Database Field Index Inside
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
GetDataInside( STRING database name, STRING field name, ARRAY low, ARRAY \\
high, ENUM periodtype, ENUM type)
\end{tabular} \\
RETURNS & NUMERIC ARRAY
\end{tabular}\(\quad\)\begin{tabular}{l} 
DESCRIPTION \\
\begin{tabular}{l} 
Get an array from a database field (Accept only values which date are inside the specified \\
limits)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE GetDataInside("database_name", "field_name", 0, 10, P_Hour, LastData)

\subsection*{1.3.6.8 GetDataStringCount}
GETDATASTRINGCOUNT
Database Field Count

SYNTAX GetDataStringCount( STRING database name, STRING field name, ARRAY regular expression)

RETURNS NUMERIC ARRAY
DESCRIPTION Get the number of database field elements for each bar and using the provided pattern
ADDITIONAL
INFO
EXAMPLE GetDataStringCount("database_name", "field_name", "buy")

\subsection*{1.3.6.9 GetDataStringCountInside}

\author{
GETDATASTRINGCOUNTINSIDE \\ Database Field Index Count Inside
}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
GetDataStringCountInsides ( STRING database name, STRING field name, ARRAY \\
low, ARRAY high, ENUM periodtype, ARRAY regular expression)
\end{tabular}
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Get the number of database field elements for each bar, for the specified limits and using the provided pattern

ADDITIONAL
INFO
EXAMPLE GetDataStringCountInside("database_name", "field_name", 0, 10, P_Hour, "buy")

\subsection*{1.3.6.10 IsDataExists}
ISDATAEXISTS
Database
Is Database Field Exists

\section*{SYNTAX IsDataExists( STRING database name, STRING field name) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION Returns 1 if the provided database field name exists, returns 0 otherwise
ADDITIONAL
INFO
EXAMPLE IsDataExists("database_name", "field_name")

\subsection*{1.3.7 Divers}

\subsection*{1.3.7.1 Output}

\section*{OUTPUT}

Set output text
Divers

SYNTAX Output (ARRAY text)
RETURNS
DESCRIPTION Set outpout window text
ADDITIONAL
INFO
EXAMPLE Output("Hello")

\subsection*{1.3.7.2 OutputList}

\section*{OUTPUTLIST}
Insert text to output list

\section*{SYNTAX OutputList (ARRAY text)}

RETURNS
DESCRIPTION Add a text to the outpout list window
ADDITIONAL
INFO
EXAMPLE OutputList("Hello")

\subsection*{1.3.7.3 States}

STATES
Divers
States

SYNTAX States( ARRAY array, ARRAY states (ex : 70|50|30))
RETURNS NUMERIC ARRAY
DESCRIPTION Returns an array containing different states.
Example: States(perf(close, 20), 10|0|-10)
Returns 0 if the array element value is lower then -10 , returns 1 if the array element value is between -10 and 0 and returns 2 if the array element value is higher than 10

ADDITIONAL
INFO
EXAMPLE \(\quad\) States(rsi(14), 70|50|30)

\subsection*{1.3.7.4 Ticker}

TICKER
Ticker
\begin{tabular}{ll} 
SYNTAX & Ticker( ARRAY tickername, ENUM arrayname, ENUM type) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns an array (close, open, high, low, volume, bar) from a specified ticker ADDITIONAL INFO

EXAMPLE Ticker("A", close, LastData)

\subsection*{1.3.7.5 Ticker1}

TICKER1
Ticker

DESCRIPTION Returns an array (close, open, high, low, volume, bar) from a specified ticker ADDITIONAL INFO

EXAMPLE Ticker1("A", 1, close, LastData)

\subsection*{1.3.8 Indicators}

\subsection*{1.3.8.1 Ad 0}

\begin{abstract}
AD
Chaikin A/D Line
Indicators
\end{abstract}

SYNTAX Ad( ARRAY high, ARRAY low, ARRAY close, ARRAY volume)
RETURNS NUMERIC ARRAY
DESCRIPTION Chaikin A/D Line
ADDITIONAL The Accumulation/Distribution Line was developed by Marc Chaikin to assess the INFO cumulative flow of money into and out of a security.

A bullish signal is given when the Accumulation/Distribution Line forms a positive divergence (for more than a month of data).
The opposite for a bearish signal.
EXAMPLE Ad(high, low, close, volume)

\subsection*{1.3.8.2 Ad 1}

\section*{AD}

Indicators
Chaikin A/D Line

SYNTAX Ad()
RETURNS NUMERIC ARRAY
DESCRIPTION Chaikin A/D Line
ADDITIONAL The Accumulation/Distribution Line was developed by Marc Chaikin to assess the INFO cumulative flow of money into and out of a security.

A bullish signal is given when the Accumulation/Distribution Line forms a positive divergence (for more than a month of data).
The opposite for a bearish signal.
EXAMPLE Ad()

\subsection*{1.3.8.3 AdOsc 0}
ADOSC
Indicators
Chaikin A/D Oscillator

SYNTAX AdOse( ARRAY high, ARRAY low, ARRAY close, ARRAY volume, ARRAY fastperiod, ARRAY slowperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Chaikin A/D Oscillator
ADDITIONAL The Chaikin Oscillator is the Moving Average Convergence Divergence indicator INFO (MACD) applied to the Accumulation/Distribution Line.

A bullish signal happen when the price action develops a lower low into oversold zones and the oscillator diverges with a higher low and begins to rise.
A bearish signal happen when the price action develops a higher high into overbought zones and the oscillator diverges with a lower high and begins to fall.

EXAMPLE \(\quad\) AdOsc(high, low, close, volume, 3, 10)

\subsection*{1.3.8.4 AdOsc 1}

\author{
ADOSC \\ Indicators \\ Chaikin A/D Oscillator
}

SYNTAX AdOsc( ARRAY fastperiod, ARRAY slowperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Chaikin A/D Oscillator
ADDITIONAL The Chaikin Oscillator is the Moving Average Convergence Divergence indicator INFO (MACD) applied to the Accumulation/Distribution Line.

A bullish signal happen when the price action develops a lower low into oversold zones and the oscillator diverges with a higher low and begins to rise.
A bearish signal happen when the price action develops a higher high into overbought zones and the oscillator diverges with a lower high and begins to fall.

EXAMPLE \(\quad\) AdOsc \((3,10)\)

\subsection*{1.3.8.5 Adx 0}
ADX
Indicators
Average Directional Movement Index

SYNTAX Adx( ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Average Directional Movement Index
ADDITIONAL The ADX is a Welles Wilder style moving average of the Directional Movement Index INFO (DX).

To interpret the ADX, consider a high number to be a strong trend, and a low number, a weak trend.

EXAMPLE \(\quad\) Adx (high, low, close, 14)

\subsection*{1.3.8.6 Adx 1}
ADX
Indicators
Average Directional Movement Index

SYNTAX Adx(ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Average Directional Movement Index
ADDITIONAL The ADX is a Welles Wilder style moving average of the Directional Movement Index INFO (DX).

To interpret the ADX, consider a high number to be a strong trend, and a low number, a weak trend.

EXAMPLE \(\quad \operatorname{Adx}(14)\)

\subsection*{1.3.8.7 Adxr 0}

\author{
ADXR \\ Indicators \\ Average Directional Movement Index Rating
}
SYNTAX Adxr( ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Average Directional Movement Index Rating
ADDITIONAL The ADXR is the average of the two ADX values.
INFO The ADXR smoothes the ADX, and is therefore less responsive, however, the ADXR filters out excessive tops and bottoms.
High ADXR value is bullish while low values is bearish.
EXAMPLE Adxr(high, low, close, 14)

\subsection*{1.3.8.8 Adxr 1}
ADXR
Indicators
Average Directional Movement Index Rating
SYNTAX Adxr( ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Average Directional Movement Index Rating
ADDITIONAL The ADXR is the average of the two ADX values.
INFO The ADXR smoothes the ADX, and is therefore less responsive, however, the ADXR filters out excessive tops and bottoms.
High ADXR value is bullish while low values is bearish.
EXAMPLE Adxr(14)

\subsection*{1.3.8.9 Apo 0}
APOIndicatorsAbsolute Price Oscillator
SYNTAX Apo( ARRAY high, ARRAY fastperiod, ARRAY slowperiod, ENUM movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION Absolute Price Oscillator
ADDITIONAL The Price Oscillator shows the difference between two moving averages. The PriceINFO Oscillator can use any time periods, unlike MACD indicator.A buy signal is generate when the Price Oscillator rises above zero, and a sell signal whenthe it falls below zero.
EXAMPLE Apo(high, 3, 10,_MaSma)

\subsection*{1.3.8.10 Apo 1}
APO
Indicators
Absolute Price Oscillator

SYNTAX Apo( ARRAY fastperiod, ARRAY slowperiod, ENUM movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION Absolute Price Oscillator
ADDITIONAL The Price Oscillator shows the difference between two moving averages. The Price INFO Oscillator can use any time periods, unlike MACD indicator.

A buy signal is generate when the Price Oscillator rises above zero, and a sell signal when the it falls below zero.

EXAMPLE \(\operatorname{Apo(3,10,~„MaSma)~}\)

\subsection*{1.3.8.11 AroonDown 0}

\author{
AROONDOWN \\ Aroon Down
}

SYNTAX AroonDown( ARRAY high, ARRAY low, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Aroon Down
ADDITIONAL INFO

EXAMPLE AroonDown(high, low, 14)

\subsection*{1.3.8.12 AroonDown 1}

AROONDOWN
Aroon Down
SYNTAX AroonDown( ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Aroon Down
ADDITIONAL INFO

EXAMPLE AroonDown(14)

\subsection*{1.3.8.13 AroonOsc 0}

\author{
AROONOSC \\ Indicators \\ Aroon Oscillator
}
SYNTAX AroonOse( ARRAY high, ARRAY low, ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Aroon Oscillator
ADDITIONAL INFO

EXAMPLE AroonOsc(high, low, 14)

\subsection*{1.3.8.14 AroonOsc 1}
AROONOSC
Indicators
Aroon Oscillator

SYNTAX AroonOse( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Aroon Oscillator
ADDITIONAL INFO

EXAMPLE AroonOsc(14)

\subsection*{1.3.8.15 AroonUp 0}
AROONUP
Indicators
Aroon Up

SYNTAX AroonUp( ARRAY high, ARRAY low, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Aroon Up
ADDITIONAL INFO

EXAMPLE AroonUp(high, low, 14)

\subsection*{1.3.8.16 AroonUp 1}
AROONUPAroon Up
SYNTAX AroonUp(ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Aroon Up
ADDITIONALINFO
EXAMPLE ..... AroonUp(14)

\subsection*{1.3.8.17 Atr 0}

\author{
ATR \\ Average True Range
}

Indicators

SYNTAX Atr( ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Average True Range
ADDITIONAL The ATR is a measure of volatility. High ATR values indicate high volatility, and low INFO values indicate low volatility.

EXAMPLE Atr(high, low, close, 14)

\subsection*{1.3.8.18 Atr 1}

ATR
Indicators
Average True Range

SYNTAX Atr (ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Average True Range
ADDITIONAL The ATR is a measure of volatility. High ATR values indicate high volatility, and low INFO values indicate low volatility.

EXAMPLE \(\operatorname{Atr}(14)\)

\subsection*{1.3.8.19 AvgPrice 0}

\author{
AVGPRICE \\ Indicators \\ Average Price
}
\begin{tabular}{ll} 
SYNTAX & AvgPrice( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Average Price \\
ADDITIONAL & \\
INFO \\
EXAMPLE & AvgPrice(open, high, low, close)
\end{tabular}

\subsection*{1.3.8.20 AvgPrice 1}
AVGPRICE
Average Price
SYNTAX AvgPrice()
RETURNS NUMERIC ARRAY
DESCRIPTION Average Price
ADDITIONALINFO
EXAMPLE AvgPrice()

\subsection*{1.3.8.21 BbandSlower 0}

BBANDSLOWER
Indicators
Bollinger Bands (Lower band)

SYNTAX BbandSlower( ARRAY close, ARRAY timeperiod, ARRAY nbdevup, ARRAY nbdevdown, ENUM movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Bollinger Bands (Lower band)
ADDITIONAL Bollinger Bands are plotted at 2 standard deviations above and below a 20-day INFO exponential moving average. As standard deviation is a measure of volatility, the bands are self-adjusting: widening during volatile markets and contracting during calmer periods.
The price are considered "overbought" when they touch the upper band and "oversold" when they touch the lower band.
Statisticly \(95 \%\) of price data should fall between the two tranding bands.
A way to use Bollinger Bands is to use the upper and lower bands as price targets. If prices bounce off the lower band and cross above the 20 day average, then the upper band becomes the upper price target.
Bollinger Bands was created by John Bollinger.
EXAMPLE BbandSlower(close, 15, 2, 2, _MaSma)

\subsection*{1.3.8.22 BbandSlower 1}

BBANDSLOWER
Indicators
Bollinger Bands (Lower band)
SYNTAX \begin{tabular}{l} 
BbandSlower( ARRAY timeperiod, ARRAY nbdevup, ARRAY nbdevdown, ENUM \\
movingaveragetype)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Bollinger Bands (Lower band)
ADDITIONAL Bollinger Bands are plotted at 2 standard deviations above and below a 20-day INFO exponential moving average. As standard deviation is a measure of volatility, the bands are self-adjusting: widening during volatile markets and contracting during calmer periods.
The price are considered "overbought" when they touch the upper band and "oversold" when they touch the lower band.
Statisticly \(95 \%\) of price data should fall between the two tranding bands.
A way to use Bollinger Bands is to use the upper and lower bands as price targets. If prices bounce off the lower band and cross above the 20 day average, then the upper band becomes the upper price target.
Bollinger Bands was created by John Bollinger.
EXAMPLE BbandSlower(14, 2, 2, _MaSma)

\subsection*{1.3.8.23 BbandsMiddle 0}

BBANDSMIDDLE
Bollinger Bands (Middle band)
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
BbandsMiddle(ARRAY close, ARRAY timeperiod, ARRAY nbdevup, ARRAY \\
nbdevdown, ENUM movingaveragetype)
\end{tabular} \\
RETURNS & \begin{tabular}{l} 
NUMERIC ARRAY
\end{tabular} \\
DESCRIPTION & Bollinger Bands (Middle band) \\
ADDITIONAL & \begin{tabular}{l} 
Bollinger Bands are plotted at 2 standard deviations above and below a 20-day \\
exponential moving average. As standard deviation is a measure of volatility, the bands \\
are self-adjusting: widening during volatile markets and contracting during calmer \\
periods.
\end{tabular} \\
INFO The price are considered "overbought" when they touch the upper band and "oversold" \\
when they touch the lower band.
\end{tabular}

\subsection*{1.3.8.24 BbandsMiddle 1}

BBANDSMIDDLE
Bollinger Bands (Middle band)
SYNTAX BbandsMiddle( ARRAY timeperiod, ARRAY nbdevup, ARRAY nbdevdown, ENUM movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Bollinger Bands (Middle band)
ADDITIONAL Bollinger Bands are plotted at 2 standard deviations above and below a 20-day exponential moving average. As standard deviation is a measure of volatility, the bands are self-adjusting: widening during volatile markets and contracting during calmer periods.
The price are considered "overbought" when they touch the upper band and "oversold" when they touch the lower band.
Statisticly \(95 \%\) of price data should fall between the two tranding bands.
A way to use Bollinger Bands is to use the upper and lower bands as price targets. If prices bounce off the lower band and cross above the 20 day average, then the upper band becomes the upper price target.
Bollinger Bands was created by John Bollinger.
EXAMPLE \(\quad\) BbandsMiddle(14, 2, 2, _MaSma)

\subsection*{1.3.8.25 BbandsUpper 0}

BBANDSUPPER
Indicators
Bollinger Bands (Upper band)

SYNTAX BbandsUpper( ARRAY close, ARRAY timeperiod, ARRAY nbdevup, ARRAY nbdevdown, ENUM movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Bollinger Bands (Upper band)
ADDITIONAL Bollinger Bands are plotted at 2 standard deviations above and below a 20-day INFO exponential moving average. As standard deviation is a measure of volatility, the bands are self-adjusting: widening during volatile markets and contracting during calmer periods.
The price are considered "overbought" when they touch the upper band and "oversold" when they touch the lower band.
Statisticly \(95 \%\) of price data should fall between the two tranding bands.
A way to use Bollinger Bands is to use the upper and lower bands as price targets. If prices bounce off the lower band and cross above the 20 day average, then the upper band becomes the upper price target.
Bollinger Bands was created by John Bollinger.
EXAMPLE BbandsUpper(close, 15, 2, 2, _MaSma)

\subsection*{1.3.8.26 BbandsUpper 1}

BBANDSUPPER
Indicators
Bollinger Bands (Upper band)

SYNTAX BbandsUpper( ARRAY timeperiod, ARRAY nbdevup, ARRAY nbdevdown, ENUM movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Bollinger Bands (Upper band)
ADDITIONAL Bollinger Bands are plotted at 2 standard deviations above and below a 20-day INFO exponential moving average. As standard deviation is a measure of volatility, the bands are self-adjusting: widening during volatile markets and contracting during calmer periods.
The price are considered "overbought" when they touch the upper band and "oversold" when they touch the lower band.
Statisticly \(95 \%\) of price data should fall between the two tranding bands.
A way to use Bollinger Bands is to use the upper and lower bands as price targets. If prices bounce off the lower band and cross above the 20 day average, then the upper band becomes the upper price target.
Bollinger Bands was created by John Bollinger.
EXAMPLE \(\quad\) BbandsUpper(14, 2, 2, _MaSma)

\author{
1.3.8.27 Bop 0 \\ BOP \\ Indicators \\ Balance Of Power
}
\begin{tabular}{ll} 
SYNTAX & Bop( ARRAY open, ARRAY high, ARRAY low, ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Balance Of Power
\end{tabular}

ADDITIONAL The Balance of Market Power is an oscillator and supports price divergence, trends, and INFO overbought-oversold levels. It can also help to determine market trends. This indicator measures the velocity of the price trend.

EXAMPLE Bop(open, high, low, close)

\subsection*{1.3.8.28 Bop 1}

BOP
Indicators
Balance Of Power

SYNTAX Bop()
RETURNS NUMERIC ARRAY
DESCRIPTION Balance Of Power
ADDITIONAL The Balance of Market Power is an oscillator and supports price divergence, trends, and INFO overbought-oversold levels. It can also help to determine market trends. This indicator measures the velocity of the price trend.

EXAMPLE \(\quad \operatorname{Bop}()\)

\subsection*{1.3.8.29 Cci 0}

CCI
Indicators
Commodity Channel Index
\begin{tabular}{ll} 
SYNTAX & Cci(ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Commodity Channel Index
\end{tabular}

ADDITIONAL The CCI is designed to detect beginning and ending market trends.
INFO A price correction is expected when CCI is above +100 (overbought) and a rally when it is below -100 (oversold).
You can also look for price divergence in the CCI.
EXAMPLE Cci(high, low, close, 14)

\subsection*{1.3.8.30 Cci 1}

\section*{CCI}

Indicators
Commodity Channel Index

SYNTAX Cci( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Commodity Channel Index
ADDITIONAL The CCI is designed to detect beginning and ending market trends.
INFO A price correction is expected when CCI is above +100 (overbought) and a rally when it is below -100 (oversold).
You can also look for price divergence in the CCI.
EXAMPLE Cci(14)

\subsection*{1.3.8.31 Cmo 0}

\author{
CMO
}

Indicators
Chande Momentum Oscillator

SYNTAX Cmo( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Chande Momentum Oscillator
ADDITIONAL The Chande Momentum Indicator is a momentum indicator which use information from INFO both up and down days. Bullish when this indicator is below level -50 and bearish when it is above level +50 .

EXAMPLE \(\quad\) Cmo(close, 14)

\subsection*{1.3.8.32 Cmo 1}

CMO
Indicators
Chande Momentum Oscillator

SYNTAX Cmo(ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Chande Momentum Oscillator
ADDITIONAL The Chande Momentum Indicator is a momentum indicator which use information from INFO both up and down days. Bullish when this indicator is below level -50 and bearish when it is above level +50 .

EXAMPLE Cmo(14)

\subsection*{1.3.8.33 Correl 0}

CORREL
Indicators
Correlation Analysis

SYNTAX Correl( ARRAY array, ARRAY array, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Correlation Analysis
ADDITIONAL Correlation Analysis compares two array or two samples of data to show you if one INFO sample of data can predict the other.
You can analyse coorelation between a stock against another stock or a stock against an indicator...
Coorrelation between an indicator and a stock.
A value above +0.7 tell you that a change in the indicator will usually predict a change in the security's price.
A value below -0.7 tell you that a change in the indicator will usually predict a move of the stock price in the opposite direction.
A value near 0 tell you that there is no relationship between the security's price and the indicator.

EXAMPLE \(\quad\) Correl(close, 0,100 )

\subsection*{1.3.8.34 Correl 1}

CORREL
Indicators
Correlation Analysis

SYNTAX Correl(ARRAY array, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Correlation Analysis
ADDITIONAL Correlation Analysis compares two array or two samples of data to show you if one INFO sample of data can predict the other.
You can analyse coorelation between a stock against another stock or a stock against an indicator...
Coorrelation between an indicator and a stock.
A value above +0.7 tell you that a change in the indicator will usually predict a change in the security's price.
A value below -0.7 tell you that a change in the indicator will usually predict a move of the stock price in the opposite direction.
A value near 0 tell you that there is no relationship between the security's price and the indicator.

EXAMPLE Correl(close, 100)
1.3.8.35 Dema 0DEMADouble Exponential Moving Average
SYNTAX Dema( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY

DESCRIPTION Double Exponential Moving Average
ADDITIONAL The DEMA is a smoothing indicator with less lag than a straight exponential moving INFO average. DEMA is an acronym for Double Exponential Moving Average, but the calculation is more complex than just a moving average of a moving average.

EXAMPLE Dema(close, 14)

\subsection*{1.3.8.36 Dema 1}

DEMA
Indicators
Double Exponential Moving Average

SYNTAX Dema( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Double Exponential Moving Average
ADDITIONAL The DEMA is a smoothing indicator with less lag than a straight exponential moving INFO average. DEMA is an acronym for Double Exponential Moving Average, but the calculation is more complex than just a moving average of a moving average.

EXAMPLE Dema(14)

\subsection*{1.3.8.37 Dx 0}

\section*{DX}

Indicators
Directional Movement Index

SYNTAX Dx(ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Directional Movement Index
ADDITIONAL Directional Movement can be used either as a system on its own or as a filter on a trendINFO following system.

It help trader find if a particular stock is trending or not.
Two lines are generated in a DMI study, +DI and -DI. The first line measures positive (upward) movement and the second number measures negative (downward) movement. A buy signal is given when the +DI line crosses over the - DI line while a sell signal is generated when the +DI line crosses below the - DI line.
A low ADX value (generally less than 20) can indicate a non-trending market with low volumes whereas a cross above 20 may indicate the start of a trend (either up or down). If the ADX is over 40 and begins to fall, it can indicate the slowdown of a current trend. This indicator can also be used to identify non-trending markets, or a deterioration of an ongoing trend.
Directional Movement Index was developed by Welles Wilder and explained in his book, New Concepts in Technical Trading Systems.

EXAMPLE Dx(high, low, close, 14)

\subsection*{1.3.8.38 Dx 1}

\section*{DX}

Indicators
Directional Movement Index

SYNTAX Dx( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Directional Movement Index
ADDITIONAL Directional Movement can be used either as a system on its own or as a filter on a trendINFO following system.

It help trader find if a particular stock is trending or not.
Two lines are generated in a DMI study, +DI and -DI. The first line measures positive (upward) movement and the second number measures negative (downward) movement. A buy signal is given when the +DI line crosses over the - DI line while a sell signal is generated when the +DI line crosses below the - DI line.
A low ADX value (generally less than 20) can indicate a non-trending market with low volumes whereas a cross above 20 may indicate the start of a trend (either up or down). If the ADX is over 40 and begins to fall, it can indicate the slowdown of a current trend. This indicator can also be used to identify non-trending markets, or a deterioration of an ongoing trend.
Directional Movement Index was developed by Welles Wilder and explained in his book, New Concepts in Technical Trading Systems.

EXAMPLE Dx(14)

\subsection*{1.3.8.39 Ema 0}

EMA
Indicators
Exponential Moving Average

SYNTAX Ema( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Exponential Moving Average
ADDITIONAL In a Simple Moving Average, each value in the time period carries equal weight, and INFO values outside of the time period are not included in the average. However, the Exponential Moving Average is a cumulative calculation, including all data. Past values have a diminishing contribution to the average, while more recent values have a greater contribution. This method allows the moving average to be more responsive to changes in the data.

EXAMPLE \(\quad\) Ema(close, 14)

\subsection*{1.3.8.40 Ema 1}

EMA
Indicators
Exponential Moving Average

SYNTAX Ema( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Exponential Moving Average
ADDITIONAL In a Simple Moving Average, each value in the time period carries equal weight, and INFO values outside of the time period are not included in the average. However, the Exponential Moving Average is a cumulative calculation, including all data. Past values have a diminishing contribution to the average, while more recent values have a greater contribution. This method allows the moving average to be more responsive to changes in the data.

EXAMPLE Ema(14)

\subsection*{1.3.8.41 Fama 0}

FAMA
Indicators
Following Adaptive Moving Average
\begin{tabular}{ll} 
SYNTAX & Fama( ARRAY close, ARRAY fastlimit, ARRAY slowlimit) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Following Adaptive Moving Average
\end{tabular}

ADDITIONAL FAMA stands for Following Adaptive Moving Average, and is a complimentary indicator INFO to MAMA.

EXAMPLE \(\quad\) Fama(close, 9, 14)

\subsection*{1.3.8.42 Fama 1}

\author{
FAMA
}

Indicators
Following Adaptive Moving Average
\begin{tabular}{ll} 
SYNTAX & Fama( ARRAY fastlimit, ARRAY slowlimit) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Following Adaptive Moving Average
\end{tabular}

ADDITIONAL FAMA stands for Following Adaptive Moving Average, and is a complimentary indicator INFO to MAMA.

EXAMPLE \(\quad \operatorname{Fama}(9,14)\)

\subsection*{1.3.8.43 GapDown}
GAPDOWN

SYNTAX GapDown()
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1, when a down gap happen
ADDITIONAL INFO

EXAMPLE GapDown()

\subsection*{1.3.8.44 GapUp}
\begin{tabular}{ll} 
GAPUP \\
Gap Up & Indicators
\end{tabular}
SYNTAX GapUp()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1, when an up gap happen
ADDITIONAL
INFO
EXAMPLE GapUp()

\title{
1.3.8.45 Hhv 0 \\ HHV \\ Indicators \\ Highest
}
\begin{tabular}{ll} 
SYNTAX & Hhv( ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Highest value over a specified period \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Hhv(close, 14)
\end{tabular}
1.3.8.46 Hhv 1
HHV
\begin{tabular}{ll} 
SYNTAX & Hhv(ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Highest value over a specified period
\end{tabular}

ADDITIONAL INFO
```

EXAMPLE Hhv(14)

```
1.3.8.47 Ht_Dcperiod 0
HT_DCPERIODHilbert Transform - Dominant Cycle Period
\begin{tabular}{ll} 
SYNTAX & Ht_Dcperiod(ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Hilbert Transform - Dominant Cycle Period \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Ht_Dcperiod(close)
\end{tabular}
1.3.8.48 Ht_Dcperiod 1
HT_DCPERIODHilbert Transform - Dominant Cycle Period
\begin{tabular}{ll} 
SYNTAX & Ht_Dcperiod() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Hilbert Transform - Dominant Cycle Period \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Ht_Dcperiod()
\end{tabular}

\subsection*{1.3.8.49 Ht_Dcphase 0}

HT_DCPHASE
Indicators
Hilbert Transform - Dominant Cycle Phase

SYNTAX Ht_Dcphase ( ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Dominant Cycle Phase
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle Phase lies in the range of 0 to 360 degrees.
The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within the current Hilbert Transform Period instantaneously measured at that bar. It is meaningful only during a cyclic period of the analytic signal waveform (price series) being measured. Its transition from 360 degrees to 0 degrees can be used to designate the start of a new cycle. It can also be utilized to signal the start or end of trending or cyclic periods. Departure from a constant rate change of phase is a sensitive way to detect the end of a cycle mode. See the examples.

EXAMPLE Ht_Dcphase(close)

\subsection*{1.3.8.50 Ht_Dcphase 1}

HT_DCPHASE
Indicators
Hilbert Transform - Dominant Cycle Phase

SYNTAX Ht_Dcphase()
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Dominant Cycle Phase
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle Phase lies in the range of 0 to 360 degrees.
The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within the current Hilbert Transform Period instantaneously measured at that bar. It is meaningful only during a cyclic period of the analytic signal waveform (price series) being measured. Its transition from 360 degrees to 0 degrees can be used to designate the start of a new cycle. It can also be utilized to signal the start or end of trending or cyclic periods. Departure from a constant rate change of phase is a sensitive way to detect the end of a cycle mode. See the examples.

EXAMPLE Ht_Dcphase()

\subsection*{1.3.8.51 Ht_Leadsine 0}

HT_LEADSINE
Indicators
Hilbert Transform - SineWave

SYNTAX Ht_Leadsine (ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - SineWave
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO

EXAMPLE Ht_Leadsine(close)

\subsection*{1.3.8.52 Ht_Leadsine 1}

HT_LEADSINE
Indicators
Hilbert Transform - SineWave

SYNTAX Ht_Leadsine()
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - SineWave
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO

EXAMPLE Ht_Leadsine()

\subsection*{1.3.8.53 Ht_Phasorphase 0}

HT_PHASORPHASE
Indicators
Hilbert Transform - Instantaneous Trendline

SYNTAX Ht_Phasorphase (ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Instantaneous Trendline
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude. HTInPhase returns the Hilbert Transform generated InPhase component of the input Price Series.
The InPhase component is used in conjunction with the Quadrature component to generate the phase of the analytic signal (using the ArcTan function) at a specific bar or for the entire Price Series.

EXAMPLE Ht_Phasorphase(close)

\subsection*{1.3.8.54 Ht_Phasorphase 1}

HT_PHASORPHASE
Indicators
Hilbert Transform - Instantaneous Trendline

SYNTAX Ht_Phasorphase()
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Instantaneous Trendline
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude. HTInPhase returns the Hilbert Transform generated InPhase component of the input Price Series.
The InPhase component is used in conjunction with the Quadrature component to generate the phase of the analytic signal (using the ArcTan function) at a specific bar or for the entire Price Series.

EXAMPLE Ht_Phasorphase()
1.3.8.55 Ht_Phasorquadrature 0
HT_PHASORQUADRATURE
SYNTAX Ht_Phasorquadrature( ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Trend vs Cycle Mode
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude. HTQuadrature returns the Hilbert Transform generated Quadrature component of the input Price Series.
The Quadrature component is used in conjunction with the InPhase component to generate the phase of the analytic signal (using the ArcTan function) at a specific bar or for the entire Price Series.
EXAMPLE Ht_Phasorquadrature(close)
1.3.8.56 Ht_Phasorquadrature 1
HT_PHASORQUADRATURE
SYNTAX Ht_Phasorquadrature()

RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Trend vs Cycle Mode
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude. HTQuadrature returns the Hilbert Transform generated Quadrature component of the input Price Series.
The Quadrature component is used in conjunction with the InPhase component to generate the phase of the analytic signal (using the ArcTan function) at a specific bar or for the entire Price Series.

EXAMPLE Ht_Phasorquadrature()

\subsection*{1.3.8.57 Ht_Sine 0}

\section*{HT_SINE}

Indicators
Hilbert Transform - SineWave

SYNTAX Ht_Sine( ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - SineWave
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO

EXAMPLE Ht_Sine(close)

\subsection*{1.3.8.58 Ht_Sine 1}

HT_SINE
Indicators
Hilbert Transform - SineWave

SYNTAX Ht_Sine()
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - SineWave
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle Phase lies in the range of 0 to 360 degrees. The Hilbert Transform Sine is just the sine of the DC Phase. The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within the current Hilbert Transform Period instantaneously measured at that bar. The HTSin is the sine of the DC Phase at a specific bar. It is most often used in conjunction with the HTLeadSin indicator to identify cyclic turning points. Quoting from Market Mode Strategies.doc by John Ehlers from MESA Software, "A clear, unequivocal cycle mode indicator can be generated by plotting the Sine of the measured phase angle advanced by 45 degrees. This leading signal crosses the sinewave \(1 / 8\) th of a cycle BEFORE the peaks and valleys of the cyclic turning points, enabling you to make your trading decision in time to profit from the entire amplitude swing of the cycle. A significant additional advantage is that the two indicator lines don't cross except at cyclic turning points, avoiding the false whipsaw signals of most "oscillators" when the market is in a Trend Mode. The two lines don't cross because the phase rate of change is nearly zero in a trend mode. Since the phase is not changing, the two lines separated by 45 degrees in phase never get the opportunity to cross."

EXAMPLE Ht_Sine()

\subsection*{1.3.8.59 Ht_Trendline 0}

HT_TRENDLINE
Indicators
Hilbert Transform - Phasor Components

SYNTAX Ht_Trendline( ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Phasor Components
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude. HTTrendline (or MESA Instantaneous Trendline) returns the Price Series value after the Dominant Cycle of the analytic signal as generated by the Hilbert Transform has been removed. The Dominant Cycle can be thought of as being the "most likely" period (in the range of 10 to 40) of a sine function of the Price Series.
The HTTrendline at a specific bar gives the current Hilbert Transform Trendline as instantaneously measured at that bar. In its Series form, the Instantaneous Trendline appears much like a Moving Average, but with minimal lag compared with the lag normally associated with such averages for equivalent periods. The HTTrendline is formed by removing the Dominant Cycle from the Price Series. See the examples.

EXAMPLE Ht_Trendline(close)

\subsection*{1.3.8.60 Ht_Trendline 1}

HT_TRENDLINE
Indicators
Hilbert Transform - Phasor Components

SYNTAX Ht_Trendline()
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Phasor Components
ADDITIONAL The Hilbert Transform is a technique used to generate inphase and quadrature components INFO of a de-trended real-valued "analytic-like" signal (such as a Price Series) in order to analyze variations of the instantaneous phase and amplitude. HTTrendline (or MESA Instantaneous Trendline) returns the Price Series value after the Dominant Cycle of the analytic signal as generated by the Hilbert Transform has been removed. The Dominant Cycle can be thought of as being the "most likely" period (in the range of 10 to 40) of a sine function of the Price Series.
The HTTrendline at a specific bar gives the current Hilbert Transform Trendline as instantaneously measured at that bar. In its Series form, the Instantaneous Trendline appears much like a Moving Average, but with minimal lag compared with the lag normally associated with such averages for equivalent periods. The HTTrendline is formed by removing the Dominant Cycle from the Price Series. See the examples.

EXAMPLE Ht_Trendline()

\author{
1.3.8.61 Ht_Trendmode 0 \\ HT_TRENDMODE \\ Indicators \\ Hilbert Transform - Phasor Components
}
\begin{tabular}{ll} 
SYNTAX & Ht_Trendmode( ARRAY close) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Hilbert Transform - Phasor Components
\end{tabular}

ADDITIONAL
INFO
EXAMPLE Ht_Trendmode(close)
1.3.8.62 Ht_Trendmode 1
HT_TRENDMODE
Indicators
Hilbert Transform - Phasor Components

SYNTAX Ht_Trendmode()
RETURNS NUMERIC ARRAY
DESCRIPTION Hilbert Transform - Phasor Components
ADDITIONAL
INFO
EXAMPLE Ht_Trendmode()

\subsection*{1.3.8.63 Inside}

\section*{INSIDE}

Indicators
Inside
\begin{tabular}{ll} 
SYNTAX & Inside() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns 1, when an inside day occurs \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Inside()
\end{tabular}

\subsection*{1.3.8.64 Kama 0}

KAMA
Indicators
Kaufman Adaptive Moving Average

SYNTAX Kama( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Kaufman Adaptive Moving Average
ADDITIONAL KAMA is an adaptive moving average, and uses the noise level of the market to determine INFO the length of the trend required to calculate the average.

EXAMPLE Kama(close, 14)

\subsection*{1.3.8.65 Kama 1}

KAMA
Indicators
Kaufman Adaptive Moving Average

SYNTAX Kama( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Kaufman Adaptive Moving Average
ADDITIONAL KAMA is an adaptive moving average, and uses the noise level of the market to determine INFO the length of the trend required to calculate the average.

EXAMPLE Kama(14)

\author{
1.3.8.66 LinearReg 0 \\ LINEARREG \\ Indicators \\ Linear Regression
}

SYNTAX LinearReg( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Linear Regression
ADDITIONAL In statistics, linear regression is a regression method of modeling the conditional expected INFO value of one variable \(y\) given the values of some other variable or variables \(x\).

EXAMPLE LinearReg(close, 14)

\subsection*{1.3.8.67 LinearReg 1}

\section*{LINEARREG}

Linear Regression

SYNTAX LinearReg( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Linear Regression
ADDITIONAL In statistics, linear regression is a regression method of modeling the conditional expected INFO value of one variable \(y\) given the values of some other variable or variables \(x\).

EXAMPLE LinearReg(14)

\subsection*{1.3.8.68 LinearReg_Angle 0}

\author{
LINEARREG_ANGLE \\ Indicators \\ Linear Regression Angle
}
\begin{tabular}{ll} 
SYNTAX & LinearReg_Angle( ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Linear Regression Angle \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & LinearReg_Angle(close, 14)
\end{tabular}

\subsection*{1.3.8.69 LinearReg_Angle 1}

\author{
LINEARREG_ANGLE \\ Indicators \\ Linear Regression Angle
}
\begin{tabular}{ll} 
SYNTAX & LinearReg_Angle( ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Linear Regression Angle \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & LinearReg_Angle(14)
\end{tabular}

\author{
1.3.8.70 LinearReg_Intercept 0 \\ LINEARREG_INTERCEPT \\ Indicators \\ Linear Regression Intercept
}
\begin{tabular}{ll} 
SYNTAX & LinearReg_Intercept(ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Linear Regression Intercept \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & LinearReg_Intercept(close, 14)
\end{tabular}
1.3.8.71 LinearReg_Intercept 1
LINEARREG_INTERCEPT
Indicators
Linear Regression Intercept
\begin{tabular}{ll} 
SYNTAX & LinearReg_Intercept(ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Linear Regression Intercept \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & LinearReg_Intercept(14)
\end{tabular}

\subsection*{1.3.8.72 LinearReg_Slope 0}

\author{
LINEARREG_SLOPE \\ Indicators \\ Linear Regression Slope
}

SYNTAX LinearReg_Slope( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Linear Regression Slope
ADDITIONAL Linear Regression Slope returns the slope of the Linear Regression line of the specified INFO period.
It return the slope of a line that best fits the stock price over the specified period.
Linear Regression Slope indicator is a statistical indicator.
An up sloping Linear Regression line indicates that prices have been rising while a down sloping line indicates that prices have been falling.

EXAMPLE LinearReg_Slope(close, 14)

\subsection*{1.3.8.73 LinearReg_Slope 1}

\author{
LINEARREG_SLOPE
}

Indicators
Linear Regression Slope

SYNTAX LinearReg_Slope( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Linear Regression Slope
ADDITIONAL Linear Regression Slope returns the slope of the Linear Regression line of the specified INFO period.
It return the slope of a line that best fits the stock price over the specified period.
Linear Regression Slope indicator is a statistical indicator.
An up sloping Linear Regression line indicates that prices have been rising while a down sloping line indicates that prices have been falling.

EXAMPLE LinearReg_Slope(14)

\subsection*{1.3.8.74 Llv 0}

LLV
Indicators
Lowest

SYNTAX Llv(ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Lowest value over a specified period
ADDITIONAL
INFO
EXAMPLE Llv(close, 14)

\subsection*{1.3.8.75 Llv 1}

LLV
Indicators
Lowest
\begin{tabular}{ll} 
SYNTAX & Llv( ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Lowest value over a specified period
\end{tabular}

ADDITIONAL INFO

EXAMPLE \(\operatorname{Llv}(14)\)

\subsection*{1.3.8.76 Ma 0}

MA
Indicators
Moving Average

SYNTAX Ma(ARRAY close, ARRAY timeperiod, ENUM movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION All Moving Average
ADDITIONAL Differents type of moving average :
INFO Double Exponential Moving Average
Exponential Moving Average
Kaufman Adaptive Moving Average
MESA Adaptive Moving Average
Simple Moving Average
T3
Triple Exponential Moving Average
Triangular Moving Average
Weighted Moving Average
EXAMPLE Ma(close, 14, _MaSma)

\subsection*{1.3.8.77 Ma 1}

MA
Indicators
Moving Average

SYNTAX Ma(ARRAY timeperiod, ENUM movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION Moving Average
ADDITIONAL Differents type of moving average :
INFO Double Exponential Moving Average
Exponential Moving Average
Kaufman Adaptive Moving Average
MESA Adaptive Moving Average
Simple Moving Average
T3
Triple Exponential Moving Average
Triangular Moving Average
Weighted Moving Average
EXAMPLE \(\quad \mathrm{Ma}\left(15, \_\right.\)MaSma)

\subsection*{1.3.8.78 Macd 0}

MACD
Indicators
Moving Average Convergence/Divergence

SYNTAX Macd( ARRAY close, ARRAY signalperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Moving Average Convergence/Divergence
ADDITIONAL MACD returns the Moving Average Convergence Divergence indicator. MACD is a INFO momentum oscillator, yet its primary use is to trade trends.
MACD has two lines, one called MACD line or fast line and the other MACD signal or slow line.
Differents interpretation can be made using MACD.
EXAMPLE Macd(close, 15)

\subsection*{1.3.8.79 Macd 1}

MACD
Indicators
Moving Average Convergence/Divergence

SYNTAX Macd( ARRAY signalperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Moving Average Convergence/Divergence
ADDITIONAL MACD returns the Moving Average Convergence Divergence indicator. MACD is a INFO momentum oscillator, yet its primary use is to trade trends.
MACD has two lines, one called MACD line or fast line and the other MACD signal or slow line.
Differents interpretation can be made using MACD.
EXAMPLE \(\quad \operatorname{Macd}(15)\)

\subsection*{1.3.8.80 MacdExt 0}

MACDEXT
Indicators
MACD with controllable MA type

SYNTAX MacdExt( ARRAY close, ARRAY fastperiod, ENUM fastmovingaveragetype, ARRAY slowperiod, ENUM slowmovingaveragetype, ARRAY signalperiod, ENUM signalmovingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION MACD with controllable MA type
ADDITIONAL MACD returns the Moving Average Convergence Divergence indicator. MACD is a INFO momentum oscillator, yet its primary use is to trade trends.

MACD has two lines, one called MACD line or fast line and the other MACD signal or slow line.
Moving Average Convergence/Divergence with controllable MA type let you choose the Moving average type to use in MACD calculations.

EXAMPLE MacdExt(close, 5, _MaSma, 3,_MaSma, 15, _MaSma)

\subsection*{1.3.8.81 MacdExt 1}

MACDEXT
Indicators
MACD with controllable MA type

SYNTAX MacdExt (ARRAY fastperiod, ENUM fastmovingaveragetype, ARRAY slowperiod, ENUM slowmovingaveragetype, ARRAY signalperiod, ENUM signalmovingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION MACD with controllable MA type
ADDITIONAL MACD returns the Moving Average Convergence Divergence indicator. MACD is a INFO momentum oscillator, yet its primary use is to trade trends.

MACD has two lines, one called MACD line or fast line and the other MACD signal or slow line.
Moving Average Convergence/Divergence with controllable MA type let you choose the Moving average type to use in MACD calculations.

EXAMPLE MacdExt(5,_MaSma, 3,_MaSma, 15, _MaSma)

\subsection*{1.3.8.82 MacdExtHist 0}
MACDEXTHIST
Indicators
MACD Historigramme with controllable MA type
\begin{tabular}{ll} 
SYNTAX & MacdExtHist( ARRAY close, ARRAY fastperiod, ENUM fastmovingaveragetype, \\
& ARRAY slowperiod, ENUM slowmovingaveragetype, ARRAY signalperiod, ENUM \\
signalmovingaveragetype)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION MACD Historigramme with controllable MA type
ADDITIONAL The MACD Histogram show the divergence between the MACD and its reference line INFO (the 9-day Exponential Moving Average).

The MACD Histogram with controllable MA type let you choose the Moving average type to use in MACD Histogram calculations.

EXAMPLE MacdExtHist(close, 5, _MaSma, 3, _MaSma, 15, _MaSma)

\subsection*{1.3.8.83 MacdExtHist 1}

\author{
MACDEXTHIST \\ MACD Historigramme with controllable MA type
}

Indicators
SYNTAX \begin{tabular}{l} 
MacdExtHist(ARRAY fastperiod, ENUM fastmovingaveragetype, ARRAY \\
slowperiod, ENUM slowmovingaveragetype, ARRAY signalperiod, ENUM \\
signalmovingaveragetype)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION MACD Historigramme with controllable MA type
ADDITIONAL The MACD Histogram show the divergence between the MACD and its reference line INFO (the 9-day Exponential Moving Average).

The MACD Histogram with controllable MA type let you choose the Moving average type to use in MACD Histogram calculations.

EXAMPLE MacdExtHist(5,_MaSma, 3,_MaSma, 15, _MaSma)

\subsection*{1.3.8.84 MacdExtSignal 0}
MACDEXTSIGNAL
Indicators
MACD Signal with controllable MA type

SYNTAX MacdExtSignal( ARRAY close, ARRAY fastperiod, ENUM fastmovingaveragetype, ARRAY slowperiod, ENUM slowmovingaveragetype, ARRAY signalperiod, ENUM signalmovingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION MACD Signal with controllable MA type
ADDITIONAL
INFO
EXAMPLE MacdExtSignal(close, 5, _MaSma, 3, _MaSma, 15, _MaSma)

\subsection*{1.3.8.85 MacdExtSignal 1}
MACDEXTSIGNAL
Indicators
MACD Signal with controllable MA type

SYNTAX MacdExtSignal( ARRAY fastperiod, ENUM fastmovingaveragetype, ARRAY slowperiod, ENUM slowmovingaveragetype, ARRAY signalperiod, ENUM signalmovingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION MACD Signal with controllable MA type
ADDITIONAL
INFO
EXAMPLE MacdExtSignal(5, _MaSma, 3, _MaSma, 15, _MaSma)

\subsection*{1.3.8.86 MacdHist 0}

MACDHIST
MACD Historigramme
\begin{tabular}{ll} 
SYNTAX & MacdHist( ARRAY close, ARRAY signalperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & MACD Historigramme
\end{tabular}

ADDITIONAL The MACD Histogram show the divergence between the MACD and its reference line INFO (the 9-day Exponential Moving Average).

EXAMPLE MacdHist(close, 15)

\subsection*{1.3.8.87 MacdHist 1}

\author{
MACDHIST \\ MACD Historigramme
}
\begin{tabular}{ll} 
SYNTAX & MacdHist( ARRAY signalperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & MACD Historigramme
\end{tabular}

ADDITIONAL The MACD Histogram show the divergence between the MACD and its reference line INFO (the 9-day Exponential Moving Average).

EXAMPLE MacdHist(15)

\subsection*{1.3.8.88 MacdSignal 0}
MACDSIGNAL
Indicators
MACD Signal
\begin{tabular}{ll} 
SYNTAX & MacdSignal(ARRAY close, ARRAY signalperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & MACD Signal \\
ADDITIONAL & \\
INFO &
\end{tabular}

EXAMPLE MacdSignal(close, 15)

\subsection*{1.3.8.89 MacdSignal 1}
MACDSIGNAL
Indicators
MACD Signal
\begin{tabular}{ll} 
SYNTAX & MacdSignal(ARRAY signalperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & MACD Signal \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & MacdSignal(15)
\end{tabular}

\subsection*{1.3.8.90 Mama 0}

MAMA
Indicators
MESA Adaptive Moving Average

SYNTAX Mama( ARRAY close, ARRAY fastlimit, ARRAY slowlimit)
RETURNS NUMERIC ARRAY
DESCRIPTION MESA Adaptive Moving Average
ADDITIONAL MAMA stands for MESA Adaptive Moving Average. INFO

EXAMPLE Mama(close, 9, 14)

\subsection*{1.3.8.91 Mama 1}

MAMA
Indicators
MESA Adaptive Moving Average
\begin{tabular}{ll} 
SYNTAX & Mama( ARRAY fastlimit, ARRAY slowlimit) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & MESA Adaptive Moving Average
\end{tabular}

ADDITIONAL MAMA stands for MESA Adaptive Moving Average. INFO

EXAMPLE \(\quad \operatorname{Mama}(9,14)\)

\subsection*{1.3.8.92 MedPrice 0}

\author{
MEDPRICE \\ Indicators \\ Median Price
}

SYNTAX MedPrice( ARRAY high, ARRAY low)
RETURNS NUMERIC ARRAY
DESCRIPTION Median Price
ADDITIONAL The Median Price function calculates the midpoint between the high and low prices for the INFO day.
The median price (called also mean or average price) provides a simplified view of the trading prices for the day.

EXAMPLE MedPrice(high, low)

\subsection*{1.3.8.93 MedPrice 1}

\begin{abstract}
MEDPRICE
Indicators
Median Price
\end{abstract}

SYNTAX MedPrice()
RETURNS NUMERIC ARRAY
DESCRIPTION Median Price
ADDITIONAL The Median Price function calculates the midpoint between the high and low prices for the INFO day.
The median price (called also mean or average price) provides a simplified view of the trading prices for the day.

EXAMPLE MedPrice()

\subsection*{1.3.8.94 Mfi 0}

\section*{MFI}

Indicators
Money Flow Index

SYNTAX Mfi( ARRAY high, ARRAY low, ARRAY close, ARRAY volume, ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Money Flow Index
ADDITIONAL The Money Flow Index is another momentum indicator illustrating the strength of money INFO flowing into and out of a security.

The essentiel difference between the Money Flow and others momentum indicator is that the money flow incorporates volume in addition to pricing information.

EXAMPLE Mfi(high, low, close, volume, 14)

\subsection*{1.3.8.95 Mfi 1}

\section*{MFI}

Indicators
Money Flow Index

SYNTAX Mfi(ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Money Flow Index
ADDITIONAL The Money Flow Index is another momentum indicator illustrating the strength of money INFO flowing into and out of a security.

The essentiel difference between the Money Flow and others momentum indicator is that the money flow incorporates volume in addition to pricing information.

EXAMPLE Mfi(14)
1.3.8.96 MidPoint 0MIDPOINT
\begin{tabular}{ll} 
SYNTAX & MidPoint(ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & MidPoint over period \\
ADDITIONAL & Simply (highest value + lowest value) \(/ 2\). \\
INFO &
\end{tabular} INFO

EXAMPLE MidPoint(close, 14)
1.3.8.97 MidPoint 1MIDPOINT

SYNTAX MidPoint( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION MidPoint over period
ADDITIONAL Simply (highest value + lowest value)/ 2 . INFO

EXAMPLE MidPoint(14)

\subsection*{1.3.8.98 MidPrice 0}
MIDPRICE
Indicators
MidPoint Price

SYNTAX MidPrice( ARRAY high, ARRAY low, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION MidPoint Price over period
ADDITIONAL Midpoint Price over period
INFO Simply (highest high + lowest low)/2
EXAMPLE \(\quad\) MidPrice(high, low, 14)

\subsection*{1.3.8.99 MidPrice 1}
MIDPRICE
Indicators
MidPoint Price

SYNTAX MidPrice( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION MidPoint Price over period
ADDITIONAL Midpoint Price over period
INFO Simply (highest high + lowest low)/2
EXAMPLE MidPrice(14)

\author{
1.3.8.100 Minus_Di 0 \\ MINUS_DI \\ Indicators \\ Minus Directional Indicator
}
\begin{tabular}{ll} 
SYNTAX & Minus_Di(ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Minus Directional Indicator \\
ADDITIONAL & \\
INFO \\
EXAMPLE & Minus_Di(high, low, close, 14)
\end{tabular}

\subsection*{1.3.8.101 Minus_Di 1}

MINUS_DI
Indicators
Minus Directional Indicator
\begin{tabular}{ll} 
SYNTAX & Minus_Di( ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Minus Directional Indicator \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Minus_Di(14)
\end{tabular}
1.3.8.102 Minus_Dm 0
MINUS_DM
\begin{tabular}{ll} 
SYNTAX & Minus_Dm( ARRAY high, ARRAY low, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Minus Directional Movement \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Minus_Dm(high, low, 14)
\end{tabular}
1.3.8.103 Minus_Dm 1
MINUS_DM
\begin{tabular}{ll} 
SYNTAX & Minus_Dm( ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Minus Directional Movement \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Minus_Dm(14)
\end{tabular}

\subsection*{1.3.8.104 Mom 0}

\section*{MOM}

Indicators
Momentum

SYNTAX Mom( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Momentum
ADDITIONAL The Momentum indicator provides an indication of a market's velocity
INFO The Momentum indicator is used as a trend-following oscillator similar to the MACD This indicator is bullish when it bottoms and turns up and bearish when it peaks and turns down.

EXAMPLE Mom(close, 14)

\subsection*{1.3.8.105 Mom 1}

MOM
Indicators
Momentum

SYNTAX Mom( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Momentum
ADDITIONAL The Momentum indicator provides an indication of a market's velocity
INFO The Momentum indicator is used as a trend-following oscillator similar to the MACD This indicator is bullish when it bottoms and turns up and bearish when it peaks and turns down.

EXAMPLE Mom(14)

\subsection*{1.3.8.106 Natr 0}

NATR
Normalized Average True Range
\begin{tabular}{ll} 
SYNTAX & Natr( ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Normalized Average True Range \\
ADDITIONAL & \\
INFO \\
EXAMPLE & Natr(high, low, close, 14)
\end{tabular}

\subsection*{1.3.8.107 Natr 1}

NATR
Indicators
Normalized Average True Range
\begin{tabular}{ll} 
SYNTAX & Natr( ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Normalized Average True Range
\end{tabular}

ADDITIONAL INFO

EXAMPLE Natr(14)

\subsection*{1.3.8.108 Obv 0}

OBV
Indicators
On Balance Volume

SYNTAX Obv (ARRAY close, ARRAY volume)
RETURNS NUMERIC ARRAY
DESCRIPTION On Balance Volume
ADDITIONAL On Balance Volume is a momentum indicator that relates volume to price change.
INFO On Balance Volume keeps a running total of volume flowing into or out of a security When the security closes higher than the previous close, all of the day's volume is considered up-volume.
A close lower than the previous day's results in all of the day's volume considered downvolume.
Rising trends is considered bullish, while falling trends is bearish.

\section*{EXAMPLE Obv(close, volume)}

\subsection*{1.3.8.109 Obv 1}

OBV
Indicators
On Balance Volume

SYNTAX Obv()
RETURNS NUMERIC ARRAY
DESCRIPTION On Balance Volume
ADDITIONAL On Balance Volume is a momentum indicator that relates volume to price change.
INFO On Balance Volume keeps a running total of volume flowing into or out of a security When the security closes higher than the previous close, all of the day's volume is considered up-volume.
A close lower than the previous day's results in all of the day's volume considered downvolume.
Rising trends is considered bullish, while falling trends is bearish.

\section*{EXAMPLE \(\operatorname{Obv}()\)}

\subsection*{1.3.8.110 Outside}
OUTSIDE
Outside
\begin{tabular}{ll} 
SYNTAX & Outside() \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Returns 1, when an outside day occurs \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Outside()
\end{tabular}
1.3.8.111 Plus_Di 0PLUS_DI
\begin{tabular}{ll} 
SYNTAX & Plus_Di(ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Plus Directional Indicator \\
ADDITIONAL & \\
INFO \\
EXAMPLE & Plus_Di(high, low, close, 14)
\end{tabular}

\subsection*{1.3.8.112 Plus_Di 1}PLUS_DI
\begin{tabular}{ll} 
SYNTAX & Plus_Di(ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Plus Directional Indicator \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Plus_Di(14)
\end{tabular}
1.3.8.113 Plus_Dm 0PLUS_DM
\begin{tabular}{ll} 
SYNTAX & Plus_Dm( ARRAY high, ARRAY low, ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Plus Directional Movement \\
ADDITIONAL & \\
INFO \\
EXAMPLE & Plus_Dm(high, low, 14)
\end{tabular}

\subsection*{1.3.8.114 Plus_Dm 1}

PLUS_DM
Indicators
Plus Directional Movement
\begin{tabular}{ll} 
SYNTAX & Plus_Dm(ARRAY timeperiod) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Plus Directional Movement \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & Plus_Dm(14)
\end{tabular}

\subsection*{1.3.8.115 Ppo 0}

\section*{PPO}

Indicators
Percentage Price Oscillator
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
Ppo(ARRAY close, ARRAY fastperiod, ARRAY slowperiod, ENUM \\
movingaveragetype)
\end{tabular}
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Percentage Price Oscillator
ADDITIONAL The Percentage Price Oscillator indicator shows the variation in percentage among two INFO moving averages for the price of a security.
When the short-term moving average or price rises above the longer-term moving average it is considered bullish.
Bearish for the opposite (Short-term moving average or price drop below the longer-term moving average).

EXAMPLE Ppo(close, 3, 10, _MaSma)

\subsection*{1.3.8.116 Ppo 1}

\section*{PPO}

Indicators
Percentage Price Oscillator
\begin{tabular}{ll} 
SYNTAX & Ppo(ARRAY fastperiod, ARRAY slowperiod, ENUM movingaveragetype) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Percentage Price Oscillator
\end{tabular}

ADDITIONAL The Percentage Price Oscillator indicator shows the variation in percentage among two INFO moving averages for the price of a security.
When the short-term moving average or price rises above the longer-term moving average it is considered bullish.
Bearish for the opposite (Short-term moving average or price drop below the longer-term moving average).

EXAMPLE \(\quad \operatorname{Ppo}\left(3,10, \_\right.\)MaSma \()\)
1.3.8.117 Roc 0ROC

ADDITIONAL The Rate of Change is an oscillator that displays the difference between the current price INFO and the price x -time periods ago.
The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : ((price/prevPrice)-1)*100
EXAMPLE Roc(close, 14)

\subsection*{1.3.8.118 Roc 1}

ROC
Rate of change
Indicators

\section*{SYNTAX Roc( ARRAY timeperiod)}

RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change
ADDITIONAL The Rate of Change is an oscillator that displays the difference between the current price INFO and the price x-time periods ago.
The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula: ((price/prevPrice)-1)*100
EXAMPLE Roc(14)
1.3.8.119 Rocp 0
ROCP
Indicators
Rate of change Percentage

SYNTAX Rocp(ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change Percentage
ADDITIONAL The Rate of Change Percentage is an oscillator that displays the difference in percentage INFO between the current price and the price \(x\)-time periods ago.

The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : (price-prevPrice)/prevPrice
EXAMPLE Rocp(close, 14)
1.3.8.120 Rocp 1ROCPIndicatorsRate of change Percentage
SYNTAX Rocp( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change Percentage
ADDITIONAL The Rate of Change Percentage is an oscillator that displays the difference in percentageINFO between the current price and the price x-time periods ago.The Rate of change indicator show overbought/oversold areas like many others indicators.Overbought means that the stock price is expected to fall while oversold means that thestock price is expected to fall.

But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : (price-prevPrice)/prevPrice
EXAMPLE ..... \(\operatorname{Rocp}(14)\)

\subsection*{1.3.8.121 Rocr 0}

ROCR
Indicators
Rate of change ratio

SYNTAX Rocr( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change ratio
ADDITIONAL The Rate of Change ratio is an oscillator that displays the difference (ratio) between the INFO current price and the price x-time periods ago.

The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : (price/prevPrice)
EXAMPLE \(\quad\) Rocr(close, 14)

\subsection*{1.3.8.122 Rocr 1}

ROCR
Indicators
Rate of change ratio

SYNTAX Rocr( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change ratio
ADDITIONAL The Rate of Change ratio is an oscillator that displays the difference (ratio) between the INFO current price and the price x-time periods ago.

The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : (price/prevPrice)
EXAMPLE \(\operatorname{Rocr}(14)\)

\subsection*{1.3.8.123 Rocr100 0}

ROCR100
Indicators
Rate of change ratio (scale 100)

SYNTAX Rocr100(ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change ratio (scale 100)
ADDITIONAL The Rate of Change ratio 100 scale is an oscillator that displays the difference (in a scale INFO of 100) between the current price and the price x-time periods ago.

The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : (price/prevPrice)*100
EXAMPLE Rocr100(close, 14)

\subsection*{1.3.8.124 Rocr100 1}

ROCR100
Indicators
Rate of change ratio (scale 100)

SYNTAX Rocr100(ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Rate of change ratio (scale 100)
ADDITIONAL The Rate of Change ratio 100 scale is an oscillator that displays the difference (in a scale INFO of 100) between the current price and the price x-time periods ago.

The Rate of change indicator show overbought/oversold areas like many others indicators. Overbought means that the stock price is expected to fall while oversold means that the stock price is expected to fall.
But, often extremely overbought/oversold readings usually imply a continuation of the current trend.
Formula : (price/prevPrice)*100
EXAMPLE Rocr100(14)

\subsection*{1.3.8.125 Rsi 0}

RSI
Indicators
Relative Strength Index

SYNTAX Rsi( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Relative Strength Index
ADDITIONAL The Wilder's Relative Strength Index is a rate of change oscillator.
INFO Relative Strength Index does not compare the relative performance of one stock to another, instead it compares the price of a stock to itself.
A reading of \(70 \%\) or higher is generally an overbought position. Conversely, values near the \(30 \%\) level should be considered an indication the situation has become oversold.
When the stock price is trending, use Relative Strength Index to trade strictly with the trend.
The Wilder's Relative Strength Index was developed by J. Welles Wilder, Jr.
EXAMPLE Rsi(close, 14)

\subsection*{1.3.8.126 Rsi 1}

RSI
Indicators
Relative Strength Index

SYNTAX Rsi (ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Relative Strength Index
ADDITIONAL The Wilder's Relative Strength Index is a rate of change oscillator.
INFO Relative Strength Index does not compare the relative performance of one stock to another, instead it compares the price of a stock to itself.
A reading of \(70 \%\) or higher is generally an overbought position. Conversely, values near the \(30 \%\) level should be considered an indication the situation has become oversold.
When the stock price is trending, use Relative Strength Index to trade strictly with the trend.
The Wilder's Relative Strength Index was developed by J. Welles Wilder, Jr.
EXAMPLE Rsi(14)

\subsection*{1.3.8.127 Sar 0}

\section*{SAR}

Indicators
Parabolic SAR
SYNTAX Sar ARRAY high, ARRAY low, ARRAY acceleration, ARRAY maximum)

\section*{RETURNS NUMERIC ARRAY}

DESCRIPTION Parabolic SAR
ADDITIONAL The Parabolic SAR sets trailing price stops for long or short positions
INFO Parabolic SAR was described by Welles Wilder in his 1978 book, "New Concepts in Technical Trading Systems".

EXAMPLE \(\quad\) Sar(high, low, 0, 0.2)

\subsection*{1.3.8.128 Sar 1}

\section*{SAR}

Indicators
Parabolic SAR

SYNTAX Sar( ARRAY acceleration, ARRAY maximum)
RETURNS NUMERIC ARRAY
DESCRIPTION Parabolic SAR
ADDITIONAL The Parabolic SAR sets trailing price stops for long or short positions
INFO Parabolic SAR was described by Welles Wilder in his 1978 book, "New Concepts in Technical Trading Systems".

EXAMPLE \(\quad \operatorname{Sar}(0,0.2)\)

\subsection*{1.3.8.129 SarExt 0}

SAREXT
Indicators
Parabolic SAR - Extended
\begin{tabular}{ll} 
SYNTAX & SarExt( ARRAY high, ARRAY low, ARRAY startvalue, ARRAY offsetonreverse, \\
& ARRAY accelerationinitlong, ARRAY accelerationlong, ARRAY \\
& accelerationmaxlong, ARRAY accelerationinitshort, ARRAY accelerationshort, \\
& ARRAY accelerationmaxshort)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Parabolic SAR - Extended
ADDITIONAL The Parabolic SAR sets trailing price stops for long or short positions INFO Parabolic SAR was described by Welles Wilder in his 1978 book, "New Concepts in Technical Trading Systems".

EXAMPLE \(\quad\) SarExt(high, low, 0.02, 0, 0, 0, 0, 0, 0, 0)

\subsection*{1.3.8.130 SarExt 1}

SAREXT
Indicators
Parabolic SAR - Extended
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
SarExt( ARRAY startvalue, ARRAY offsetonreverse, ARRAY accelerationinitlong,, \\
ARRAY accelerationlong, ARRAY accelerationmaxlong, ARRAY \\
accelerationinitshort, ARRAY accelerationshort, ARRAY accelerationmaxshort)
\end{tabular} \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Parabolic SAR - Extended
ADDITIONAL The Parabolic SAR sets trailing price stops for long or short positions
INFO Parabolic SAR was described by Welles Wilder in his 1978 book, "New Concepts in Technical Trading Systems".

EXAMPLE \(\quad \operatorname{SarExt}(0.02,0,0,0,0,0,0,0)\)

\subsection*{1.3.8.131 Sma 0}

\section*{SMA}

Indicators
Simple Moving Average

SYNTAX Sma( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Simple Moving Average
ADDITIONAL The Simple Moving Average is calculated by summing the closing prices of the security INFO for a period of time and then dividing this total by the number of time periods. the SMA is basically the average stock price over time.
One of the moving average use is to show the trend direction of a security price.
EXAMPLE \(\quad\) Sma(close, 14)

\subsection*{1.3.8.132 Sma 1}

\section*{SMA}

Simple Moving Average
SYNTAX Sma( ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Simple Moving Average
ADDITIONAL The Simple Moving Average is calculated by summing the closing prices of the security INFO for a period of time and then dividing this total by the number of time periods. the SMA is basically the average stock price over time.
One of the moving average use is to show the trend direction of a security price.
EXAMPLE \(\operatorname{Sma}(14)\)

\subsection*{1.3.8.133 Stddev 0}
STDDEV
Indicators
Standard Deviation

SYNTAX Stddev( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Standard Deviation
ADDITIONAL Standard Deviation is a statistical measurement of volatility. It measures how widely INFO values range from the average value.

High standard deviation means high volatility and large difference between the closing prices and the average closing price.

EXAMPLE \(\quad\) Stddev(close, 100)

\subsection*{1.3.8.134 Stddev 1}
STDDEV
Indicators
Standard Deviation

SYNTAX Stddev( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Standard Deviation
ADDITIONAL Standard Deviation is a statistical measurement of volatility. It measures how widely INFO values range from the average value.

High standard deviation means high volatility and large difference between the closing prices and the average closing price.

EXAMPLE \(\quad \operatorname{Stddev}(100)\)

\subsection*{1.3.8.135 StochFastd 0}

\section*{STOCHFASTD}

Stochastic Fast D

SYNTAX StochFastd( ARRAY high, ARRAY low, ARRAY close, ARRAY fastk_period, ARRAY fastd_period, ENUM fastd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Fast D
ADDITIONAL
INFO
EXAMPLE StochFastd(high, low, close, 5, 5, _MaSma)

\subsection*{1.3.8.136 StochFastd 1}
STOCHFASTD

DESCRIPTION Stochastic Fast D
ADDITIONAL
INFO
EXAMPLE \(\quad\) StochFastd(5, 5, _MaSma)
1.3.8.137 StochFastk 0
STOCHFASTKARRAY fastd_period, ENUM fastd_movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Fast K
ADDITIONAL
INFO
EXAMPLE StochFastk(high, low, close, 5, 5, _MaSma)

\subsection*{1.3.8.138 StochFastk 1}
STOCHFASTK
Indicators
Stochastic Fast K

SYNTAX StochFastk( ARRAY fastk_period, ARRAY fastd_period, ENUM
fastd_movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Fast K
ADDITIONAL
INFO
EXAMPLE \(\operatorname{StochFastk(5,5,~,MaSma)~}\)
1.3.8.139 StochRsiFastd 0
STOCHRSIFASTD ..... Indicators
Stochastic Relative Strength Index Fast D

Stochastic Relative Strength Index Fast D

SYNTAX StochRsiFastd(ARRAY close, ARRAY timeperiod, ARRAY fastk_period, ARRAY fastd_period, ENUM fastd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Relative Strength Index Fast D
ADDITIONAL
INFO
EXAMPLE \(\quad\) StochRsiFastd(close, 15, 5, 5, _MaSma)

\subsection*{1.3.8.140 StochRsiFastd 1}

\section*{STOCHRSIFASTD}

Stochastic Relative Strength Index Fast D

SYNTAX StochRsiFastd( ARRAY timeperiod, ARRAY fastk_period, ARRAY fastd_period, ENUM fastd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Relative Strength Index Fast D
ADDITIONAL
INFO
EXAMPLE \(\quad\) StochRsiFastd(15, 5, 5,_MaSma)

\subsection*{1.3.8.141 StochRsiFastk 0}

\section*{STOCHRSIFASTK}

Indicators
Stochastic Relative Strength Index Fast K

SYNTAX StochRsiFastk( ARRAY close, ARRAY timeperiod, ARRAY fastk_period, ARRAY fastd_period, ENUM fastd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Relative Strength Index Fast K
ADDITIONAL
INFO
EXAMPLE \(\quad\) StochRsiFastk(close, 15, 5, 5, _MaSma)

\subsection*{1.3.8.142 StochRsiFastk 1}

\section*{STOCHRSIFASTK}

Indicators
Stochastic Relative Strength Index Fast K

SYNTAX StochRsiFastk( ARRAY timeperiod, ARRAY fastk_period, ARRAY fastd_period, ENUM fastd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Relative Strength Index Fast K
ADDITIONAL
INFO
EXAMPLE \(\quad\) StochRsiFastk(15, 5, 5,_MaSma)

\subsection*{1.3.8.143 StochSlowd 0 \\ STOCHSLOWD \\ Indicators \\ Stochastic Slow D}

SYNTAX StochSlowd( ARRAY high, ARRAY low, ARRAY close, ARRAY volume, ARRAY fastk_period, ARRAY slowk_period, ENUM slowk_movingaveragetype, ARRAY slowd_period, ENUM slowd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Slow D
ADDITIONAL
INFO
EXAMPLE StochSlowd(high, low, close, volume, 5, 3, _MaSma, 3, _MaSma)

\subsection*{1.3.8.144 StochSlowd 1}

\section*{STOCHSLOWD}

Indicators
Stochastic Slow D

SYNTAX StochSlowd( ARRAY fastk_period, ARRAY slowk_period, ENUM slowk_movingaveragetype, ARRAY slowd_period, ENUM slowd_movingaveragetype)

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Slow D
ADDITIONAL
INFO
EXAMPLE StochSlowd(5, 3,_MaSma, 3,_MaSma)

\subsection*{1.3.8.145 StochSlowk 0}

\section*{STOCHSLOWK}

Indicators
Stochastic Slow K
SYNTAX \begin{tabular}{l} 
StochSlowk( ARRAY high, ARRAY low, ARRAY close, ARRAY volume, ARRAY \\
fastk_period, ARRAY slowk_period, ENUM slowk_movingaveragetype, ARRAY \\
slowd_period, ENUM slowd_movingaveragetype)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Slow K
ADDITIONAL
INFO
EXAMPLE StochSlowk(high, low, close, volume, 5, 3, _MaSma, 3, _MaSma)
1.3.8.146 StochSlowk 1
STOCHSLOWK
    slowd_movingaveragetype)
RETURNS NUMERIC ARRAY
DESCRIPTION Stochastic Slow K
ADDITIONAL
INFO
EXAMPLE StochSlowk(5, 3,_MaSma, 3, _MaSma)

\subsection*{1.3.8.147 T3 0}

T3
Indicators

SYNTAX T3( ARRAY close, ARRAY timeperiod, ARRAY vfactor)
RETURNS NUMERIC ARRAY
DESCRIPTION Triple Exponential Moving Average (T3)
ADDITIONAL The T3 is a type of moving average, or smoothing function. It use the DEMA in its INFO calculations; the DEMA which use the MA in its proper calculations.

EXAMPLE T3(close, 14, 0)

\subsection*{1.3.8.148 T3 1}

T3
Indicators
T3

SYNTAX T3( ARRAY timeperiod, ARRAY vfactor)
RETURNS NUMERIC ARRAY
DESCRIPTION Triple Exponential Moving Average (T3)
ADDITIONAL The T3 is a type of moving average, or smoothing function. It use the DEMA in its INFO calculations; the DEMA which use the MA in its proper calculations.

EXAMPLE \(\quad\) T3 \((14,0)\)
1.3.8.149 Tema 0TEMA
SYNTAX Tema( ARRAY close, ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Triple Exponential Moving Average
ADDITIONAL The TEMA is a smoothing indicator with less lag than a straight exponential moving INFO average.

EXAMPLE Tema(close, 14)
1.3.8.150 Tema 1TEMA
SYNTAX Tema( ARRAY timeperiod)

RETURNS NUMERIC ARRAY
DESCRIPTION Triple Exponential Moving Average
ADDITIONAL The TEMA is a smoothing indicator with less lag than a straight exponential moving INFO average.

EXAMPLE Tema(14)

\title{
1.3.8.151 Trange 0 \\ TRANGE \\ Indicators \\ True Range
}

SYNTAX Trange( ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION True Range
ADDITIONAL The True Range function is used to determine the normal trading range of a stock or INFO commodity.

EXAMPLE Trange(high, low, close)

\subsection*{1.3.8.152 Trange 1}

TRANGE
Indicators
True Range
SYNTAX Trange()

RETURNS NUMERIC ARRAY
DESCRIPTION True Range
ADDITIONAL The True Range function is used to determine the normal trading range of a stock or INFO commodity.

EXAMPLE Trange()

\subsection*{1.3.8.153 Trima 0}

TRIMA
riangular Moving Average
Indicators

SYNTAX Trima( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Triangular Moving Average
ADDITIONAL The Triangular Moving Average is equivalent to a Simple Moving Average of a Simple INFO Moving Average.

EXAMPLE Trima(close, 14)
1.3.8.154 Trima 1
TRIMAIndicators
Triangular Moving Average
SYNTAX Trima( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Triangular Moving Average
ADDITIONAL The Triangular Moving Average is equivalent to a Simple Moving Average of a Simple INFO Moving Average.
EXAMPLE ..... Trima(14)

\subsection*{1.3.8.155 Trix 0}

\section*{TRIX}

Indicators
Trix

SYNTAX Trix (ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
ADDITIONAL TRIX is an indicator that correspond to a percent rate-of-change of a triple-smoothed INFO exponential moving average of a closing price.
It is a momentum indicator which moves up over and under a zero line. A movement above is bullish, while a movement below is bearish.

EXAMPLE Trix(close, 14)

\subsection*{1.3.8.156 Trix 1}

\section*{TRIX}

Indicators
Trix

SYNTAX Trix (ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
ADDITIONAL TRIX is an indicator that correspond to a percent rate-of-change of a triple-smoothed INFO exponential moving average of a closing price.
It is a momentum indicator which moves up over and under a zero line. A movement above is bullish, while a movement below is bearish.

EXAMPLE Trix(14)
1.3.8.157 Tsf 0
TSFIndicatorsTime Series Forecast
SYNTAX Tsf(ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Time Series ForecastADDITIONAL The Time Series Forecast function displays the statistical trend of a security's price over aINFOspecified time period based on linear regression analysis.
EXAMPLE ..... Tsf(close, 14)
1.3.8.158 Tsf 1
TSFIndicatorsTime Series Forecast
SYNTAX Tsf( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Time Series ForecastADDITIONAL The Time Series Forecast function displays the statistical trend of a security's price over aINFOspecified time period based on linear regression analysis.
EXAMPLE ..... Tsf(14)

\subsection*{1.3.8.159 TypPrice 0}

\section*{TYPPRICE}

Indicators
Typical Price

SYNTAX TypPrice( ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Typical Price
ADDITIONAL The Typical Price function calculates the average of the high, low, and closing prices for INFO the day.
Its an interesting function as it incluse in one line information for the entire trading day. You can also compare this line to its moving average to determine if a security is trending.

EXAMPLE TypPrice(high, low, close)

\subsection*{1.3.8.160 TypPrice 1}

\section*{TYPPRICE}

Indicators
Typical Price

SYNTAX TypPrice( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Typical Price
ADDITIONAL The Typical Price function calculates the average of the high, low, and closing prices for INFO the day.
Its an interesting function as it incluse in one line information for the entire trading day. You can also compare this line to its moving average to determine if a security is trending.

EXAMPLE TypPrice(14)

\subsection*{1.3.8.161 UltOsc 0}

ULTOSC
Indicators
Ultimate Oscillator

SYNTAX UltOse( ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod1, ARRAY timeperiod2, ARRAY timeperiod3)

RETURNS NUMERIC ARRAY
DESCRIPTION Ultimate Oscillator
ADDITIONAL The Ultimate Oscillator combines a stock's price action during three different time frames INFO into one oscillator.

Oversold territory is below 30 while overbought territory is above 70.
The Ultimate Oscillator was developed by Larry Williams.
EXAMPLE UltOsc(high, low, close, 7, 14, 28)

\subsection*{1.3.8.162 UltOsc 1}

ULTOSC
Indicators
Ultimate Oscillator

SYNTAX UltOse( ARRAY timeperiod1, ARRAY timeperiod2, ARRAY timeperiod3)
RETURNS NUMERIC ARRAY
DESCRIPTION Ultimate Oscillator
ADDITIONAL The Ultimate Oscillator combines a stock's price action during three different time frames INFO into one oscillator.

Oversold territory is below 30 while overbought territory is above 70.
The Ultimate Oscillator was developed by Larry Williams.
EXAMPLE UltOsc(7, 14, 28)

\subsection*{1.3.8.163 Var 0}

\section*{VAR}

Indicators
Variance

SYNTAX \(\quad \operatorname{Var}\) (ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Variance
ADDITIONAL The variance is a statistical measure of the dispersion of values arount the expected value. INFO The standard deviation is the square root of the variance.

EXAMPLE \(\operatorname{Var}(\) close, 100)

\subsection*{1.3.8.164 Var 1}

VAR
Indicators
Variance

SYNTAX \(\quad \operatorname{Var}\) (ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Variance
ADDITIONAL The variance is a statistical measure of the dispersion of values arount the expected value. INFO The standard deviation is the square root of the variance.

EXAMPLE \(\operatorname{Var}(100)\)

\subsection*{1.3.8.165 WclPrice 0}

WCLPRICE
Weighted Close Price

SYNTAX WclPrice( ARRAY high, ARRAY low, ARRAY close)
RETURNS NUMERIC ARRAY
DESCRIPTION Weighted Close Price
ADDITIONAL The Weighted Close indicator calculates an average of each day's price.
INFO the Weighted Close provides a simplified view of the day.

EXAMPLE WclPrice(high, low, close)

\subsection*{1.3.8.166 WclPrice 1}

WCLPRICE
Indicators
Weighted Close Price
SYNTAX WclPrice()

RETURNS NUMERIC ARRAY
DESCRIPTION Weighted Close Price
ADDITIONAL The Weighted Close indicator calculates an average of each day's price.
INFO
the Weighted Close provides a simplified view of the day.
EXAMPLE WclPrice()

\subsection*{1.3.8.167 Willr 0}

WILLR
Indicators
Williams' \%R

SYNTAX Willr( ARRAY high, ARRAY low, ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Williams' \%R
ADDITIONAL Williams \%R is a momentum indicator that is designed to identify overbought and INFO oversold areas in a nontrending market.
A bullish signal happen when the indicator is in an oversold area and the price change direction to the upward.
The opposite for the bearish signal.
Williams \%R was developed by Larry Williams.
EXAMPLE Willr(high, low, close, 14)

\subsection*{1.3.8.168 Willr 1}

WILLR
Indicators
Williams' \%R

SYNTAX Willr( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Williams' \%R
ADDITIONAL Williams \%R is a momentum indicator that is designed to identify overbought and INFO oversold areas in a nontrending market.

A bullish signal happen when the indicator is in an oversold area and the price change direction to the upward.
The opposite for the bearish signal.
Williams \%R was developed by Larry Williams.
EXAMPLE Willr(14)

\subsection*{1.3.8.169 Wma 0}

WMA
Indicators
Weighted Moving Average

SYNTAX Wma( ARRAY close, ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Weighted Moving Average
ADDITIONAL A Weighted Moving Average is a Moving Average indicator that shows the average value INFO of a security's price over a period of time with special emphasis on the more recent portions of the time period under analysis.

EXAMPLE Wma(close, 14)

\subsection*{1.3.8.170 Wma 1}

WMA
Indicators
Weighted Moving Average

SYNTAX Wma( ARRAY timeperiod)
RETURNS NUMERIC ARRAY
DESCRIPTION Weighted Moving Average
ADDITIONAL A Weighted Moving Average is a Moving Average indicator that shows the average value INFO of a security's price over a period of time with special emphasis on the more recent portions of the time period under analysis.

EXAMPLE Wma(14)

\subsection*{1.3.9 Math}

\subsection*{1.3.9.1 Abs}
ABS
Abs
\begin{tabular}{ll} 
SYNTAX & Abs( ARRAY value) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Calculate the absolute value of each element in the array
ADDITIONAL
INFO
EXAMPLE Abs(-1)

\subsection*{1.3.9.2 Atan}
ATAN Math
Atan
\begin{tabular}{ll} 
SYNTAX & Atan( ARRAY array) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & Calculate the arc tangent of each element in the array \\
ADDITIONAL & \\
INFO & \\
EXAMPLE & \(\operatorname{Atan}(1)\)
\end{tabular}

\subsection*{1.3.9.3 Avg 0}

AVG
Math
Average

SYNTAX \(\quad \operatorname{Avg}\) (ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates the average of the ARRAY for all the lookback periods (current bar is included)

ADDITIONAL
INFO
EXAMPLE Avg(close)

\subsection*{1.3.9.4 Avg 1}

\section*{AVG}

Average

SYNTAX \(\quad \operatorname{Avg}\) (ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates the average of the ARRAY for the specified number of lookback periods (current bar is included)

ADDITIONAL
INFO
EXAMPLE Avg(close, 10)

\subsection*{1.3.9.5 Ceil}

\section*{CEIL}

Ceiling

SYNTAX Ceil( ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION For each element in the array, calculate the lowest integer greater than or equal to the element value

ADDITIONAL
INFO
EXAMPLE \(\operatorname{Ceil}(1,2)\)

\subsection*{1.3.9.6 Cos}
\begin{tabular}{lll} 
COS \\
\(\operatorname{Cos}\) & Math
\end{tabular}

SYNTAX Cos(ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the cosinus of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\operatorname{Cos}(1)\)

\subsection*{1.3.9.7 Cosh}
COSH Math
Cosh
SYNTAX Cosh (ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the hyperbolic cosine of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\operatorname{Cosh}(1)\)

\subsection*{1.3.9.8 DivRem}
DIVREM Math
DivRem

SYNTAX DivRem (ARRAY array, ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION For each element in the array, calculate the quotion
ADDITIONAL
INFO
EXAMPLE \(\quad \operatorname{DivRem}(1,1)\)1.3.9.9 ExpEXPExp
SYNTAX \(\operatorname{Exp}\) (ARRAY array)
RETURNS NUMERIC ARRAYDESCRIPTION For each element in the array, calculate 'e' raised to the element valueADDITIONALINFO
EXAMPLE ..... \(\operatorname{Exp}(1)\)

\subsection*{1.3.9.10 Floor}

FLOOR Math
Floor
\begin{tabular}{ll} 
SYNTAX & Floor( ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION For each element in the array, calculate the largest integer less than or equal to the element value

ADDITIONAL
INFO
EXAMPLE \(\quad\) Floor(1,2)

\subsection*{1.3.9.11 Frac}
FRAC
Frac
\begin{tabular}{ll} 
SYNTAX & Frac( ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Calculate the fractional part of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\quad \operatorname{Frac}(1,2)\)

\subsection*{1.3.9.12 IeeeRemainder}
IEEEREMAINDER Math
IeeeRemainder

SYNTAX IeeeRemainder( ARRAY array, ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION For each element in the array, calculate the remainder resulting from the division of the element value by the specified number

ADDITIONAL
INFO
EXAMPLE IeeeRemainder(1,1)

\subsection*{1.3.9.13 Int}

INT
Math
Int

SYNTAX Int (ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the integer part of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\operatorname{Int}(1,2)\)
1.3.9.14 Log
LOG
SYNTAX Log(ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the logarithm of each element in the array
ADDITIONALINFO
EXAMPLE ..... \(\log (1)\)

\subsection*{1.3.9.15 Log10}

LOG10
Log10

SYNTAX Log10(ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the base 10 logarithm of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\log 10(10)\)

\subsection*{1.3.9.16 Max}
MAX
Max
\begin{tabular}{ll} 
SYNTAX & Max( ARRAY array, ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION For each bar of the ARRAY, returns the largest one
ADDITIONAL INFO

EXAMPLE \(\quad \operatorname{Max}(\operatorname{perf}(\) close), 0)

\subsection*{1.3.9.17 Min}
MIN
SYNTAX Min( ARRAY array, ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION For each bar of the ARRAY, returns the smallest one
ADDITIONAL INFO

EXAMPLE \(\quad\) Min(perf(close), 0)

\subsection*{1.3.9.18 Pow}

POW Math
Pow

\section*{SYNTAX Pow( ARRAY array, ARRAY power) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION For each element in the array, raise the element value to the specified power
ADDITIONAL
INFO
EXAMPLE \(\operatorname{Pow}(2,2)\)

\subsection*{1.3.9.19 Random}

RANDOM Math
Random Number

SYNTAX Random(ARRAY min, ARRAY max)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns a random number between min and max
ADDITIONAL
INFO
EXAMPLE \(\quad\) Random \((0,100)\)
1.3.9.20 Round
ROUND
SYNTAX Round( ARRAY array, ARRAY decimals)

RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the rounded value of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\quad\) Round \((1.222,2)\)
1.3.9.21 Sharpe
SHARPE ..... Math
Sharpe
SYNTAX Sharpe( ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the sharpe ratio for the specified array and period
ADDITIONALINFO
EXAMPLE Sharpe(close, 0)

\subsection*{1.3.9.22 Sign}
SIGN
Sign Math
SYNTAX \(\quad \operatorname{Sign}(\) ARRAY array)
RETURNS NUMERIC ARRAY

DESCRIPTION Calculate the sign of each element in the array
ADDITIONAL INFO
```

EXAMPLE Sign(1)

```

\subsection*{1.3.9.23 Sin}
SIN
Sin Math
\begin{tabular}{ll} 
SYNTAX & \(\operatorname{Sin}(\) ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Calculate the sinus of each element in the array
ADDITIONAL INFO

EXAMPLE \(\quad \operatorname{Sin}(1)\)

\subsection*{1.3.9.24 Sinh}

SINH
Sinh
SYNTAX \(\operatorname{Sinh}\) (ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the hyperbolic sine of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\operatorname{Sinh}(1)\)

\subsection*{1.3.9.25 Sqrt}

SQRT
Math
Sqrt
\begin{tabular}{ll} 
SYNTAX & Sqrt( ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Calculate the square root of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\quad\) Sqrt(4)

\subsection*{1.3.9.26 Sum 0}
SUM
Sum
\begin{tabular}{ll} 
SYNTAX & Sum( ARRAY array) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Calculates a cumulative sum of the ARRAY for all the lookback periods (current bar is \\
included)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE \(\quad\) Sum \((\operatorname{perf}(\) close \()>0)\)

\subsection*{1.3.9.27 Sum 1}

SUM Math
Sum

SYNTAX Sum( ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates a cumulative sum of the ARRAY for the specified number of lookback periods (current bar is included)

ADDITIONAL
INFO
EXAMPLE \(\quad \operatorname{Sum}(\operatorname{perf}(\) close \()>0,20)\)

\subsection*{1.3.9.28 Tan}

TAN
Tan

SYNTAX Tan(ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the tangent of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\operatorname{Tan}(1)\)

\subsection*{1.3.9.29 Tanh}

TANH
Math
Tanh

SYNTAX Tanh( ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculate the hyperbolic tangent of each element in the array
ADDITIONAL
INFO
EXAMPLE \(\quad \operatorname{Tanh}(1)\)

\subsection*{1.3.10 Optimal Signal}

\subsection*{1.3.10.1 BSignal}

BSIGNAL
Optimal signal
Optimal Signal
\begin{tabular}{ll} 
SYNTAX & BSignal( ARRAY min profit, ARRAY max drawdown, ARRAY minimum days, \\
ARRAY maximum days)
\end{tabular}

RETURNS NUMERIC ARRAY
DESCRIPTION Give you the best long and short entries and exits depending on the parameters you choosed
Example if you choose a minimum profit of 20 percent, a maximum drawdown of 10 percent,
a minimum number of bars of 10 and a maximum number of bars of 100
The system will gives you the most profitable trades that meets theses criterias Plot the returned array in a pane that contains candelstick data to see entries and exits arrows
Click on those arrows to see additional information
ADDITIONAL
INFO
EXAMPLE \(\quad\) BSignal(30, \(-10,-1,300)\)

\subsection*{1.3.10.2 BSignalLong}

BSIGNALLONG
Optimal long signal

SYNTAX BSignalLong( ARRAY min profit, ARRAY max drawdown, ARRAY minimum days, ARRAY maximum days)

RETURNS NUMERIC ARRAY
DESCRIPTION Give you the best long entries and exits depending on the parameters you choosed Example if you choose a minimum profit of 20 percent, a maximum drawdown of 10 percent, a minimum number of bars of 10 and a maximum number of bars of 100 The system will gives you the most profitable trades that meets theses criterias Plot the returned array in a pane that contains candelstick data to see entries and exits arrows
Click on those arrows to see additional information
ADDITIONAL INFO

EXAMPLE \(\quad \operatorname{BSignalLong}(30,-10,-1,300)\)

\subsection*{1.3.10.3 BSignalShort}

\section*{BSIGNALSHORT}

Optimal Signal
Optimal short signal
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
BSignalShort(ARRAY min profit, ARRAY max drawdown, ARRAY minimum \\
days, ARRAY maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Give you the best short entries and exits depending on the parameters you choosed \\
Example if you choose a minimum profit of 20 percent, a maximum drawdown of 10 \\
percent, \\
a minimum number of bars of 10 and a maximum number of bars of 100 \\
The system will gives you the most profitable trades that meets theses criterias \\
Plot the returned array in a pane that contains candelstick data to see entries and exits \\
arrows \\
Click on those arrows to see additional information
\end{tabular}
\end{tabular}

ADDITIONAL INFO

EXAMPLE \(\quad\) BSignalShort(30, \(-10,-1,300\) )

\subsection*{1.3.10.4 EntryLongProfit}

ENTRYLONGPROFIT
Optimal Signal
\begin{tabular}{ll} 
SYNTAX & EntryLongProfit(ARRAY max drawdown, ARRAY maximum days) \\
RETURNS & NUMERIC ARRAY
\end{tabular} \begin{tabular}{ll} 
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance of a system that buy the \\
current symbol at the next open bar and sell it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfit(-10, -1)

\title{
1.3.10.5 EntryLongProfitCond \\ ENTRYLONGPROFITCOND
}

\author{
Optimal Signal
}
\(\left.\begin{array}{ll}\text { SYNTAX } & \begin{array}{l}\text { EntryLongProfitCond(ARRAY condition, ARRAY max drawdown, ARRAY } \\
\text { maximum days) }\end{array} \\
\text { RETURNS } & \text { NUMERIC ARRAY }\end{array}\right]\)\begin{tabular}{l} 
DESCRIPTION \begin{tabular}{l} 
Calculate the performance of a system that buy the current symbol at the next open bar \\
and sell it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitCond(1,-10, -1)

\author{
1.3.10.6 EntryLongProfitCondExitRule \\ ENTRYLONGPROFITCONDEXITRULE
}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryLongProfitCondExitRule( ARRAY condition, ARRAY exit, ARRAY max \\
drawdown, ARRAY maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Calculate the performance of a system that buy the current symbol at the next open bar \\
and sell it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitCondExitRule(1, 1, -10, -1)

\subsection*{1.3.10.7 EntryLongProfitExitRule \\ ENTRYLONGPROFITEXITRULE}

\author{
Optimal Signal
}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryLongProfitExitRule( ARRAY exit, ARRAY max drawdown, ARRAY \\
maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance of a system that buy the \\
current symbol at the next open bar and sell it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitExitRule(1, -10, -1)

\title{
1.3.10.8 EntryLongProfitPerBar \\ ENTRYLONGPROFITPERBAR
}
\begin{tabular}{ll} 
SYNTAX & EntryLongProfitPerBar( ARRAY max drawdown, ARRAY maximum days) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance PER BAR of a system that \\
buy the current symbol at the next open bar and sell it when the system drawdown \\
becomes \\
higher than the specified number or the maximum number of bar is reached
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitPerBar(-10, -1)

\subsection*{1.3.10.9 EntryLongProfitPerBarCond \\ ENTRYLONGPROFITPERBARCOND}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryLongProfitPerBarCond( ARRAY condition, ARRAY max drawdown, ARRAY \\
maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Calculate the performance PER BAR of a system that buy the current symbol at the next \\
open bar and sell it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitPerBarCond(1, -10, -1)

\title{
1.3.10.10 EntryLongProfitPerBarCondExitRule \\ ENTRYLONGPROFITPERBARCONDEXITRULE
}
\(\left.\begin{array}{ll}\text { SYNTAX } & \begin{array}{l}\text { EntryLongProfitPerBarCondExitRule( ARRAY condition, ARRAY exit, ARRAY } \\
\text { max drawdown, ARRAY maximum days) }\end{array} \\
\text { RETURNS } & \text { NUMERIC ARRAY }\end{array}\right]\)\begin{tabular}{l} 
DESCRIPTION \begin{tabular}{l} 
Calculate the performance PER BAR of a system that buy the current symbol at the next \\
open bar and sell it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitPerBarCondExitRule(1, 1, -10, -1)

\subsection*{1.3.10.11 EntryLongProfitPerBarExitRule}

ENTRYLONGPROFITPERBAREXITRULE
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryLongProfitPerBarExitRule( ARRAY exit, ARRAY max drawdown, ARRAY \\
maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance PER BAR of a system that \\
buy the current symbol at the next open bar and sell it when the system drawdown \\
becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryLongProfitPerBarExitRule(1, -10, -1)

\subsection*{1.3.10.12 EntryShortProfit}

ENTRYSHORTPROFIT

\author{
Optimal Signal
}
\begin{tabular}{ll} 
SYNTAX & EntryShortProfit( ARRAY max drawdown, ARRAY maximum days) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance of a system that short the \\
current symbol at the next open bar and cover it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfit(-10, -1)

\title{
1.3.10.13 EntryShortProfitCond \\ ENTRYSHORTPROFITCOND
}

\author{
Optimal Signal
}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryShortProfitCond( ARRAY condition, ARRAY max drawdown, ARRAY \\
maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Calculate the performance of a system that short the current symbol at the next open bar \\
and cover it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitCond(1, -10, -1)

\subsection*{1.3.10.14 EntryShortProfitCondExitRule}

\section*{ENTRYSHORTPROFITCONDEXITRULE}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryShortProfitCondExitRule( ARRAY condition, ARRAY exit, ARRAY max \\
drawdown, ARRAY maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Calculate the performance of a system that short the current symbol at the next open bar \\
and cover it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitCondExitRule(1, 1, -10, -1)

\subsection*{1.3.10.15 EntryShortProfitExitRule}

\section*{ENTRYSHORTPROFITEXITRULE}

\author{
Optimal Signal
}

\author{
SYNTAX EntryShortProfitExitRule( ARRAY exit, ARRAY max drawdown, ARRAY maximum days) \\ RETURNS NUMERIC ARRAY \\ DESCRIPTION For each bar in the CLOSE array, calculate the performance of a system that short the current symbol at the next open bar and cover it when the system drawdown becomes higher than the specified number or the maximum number of bar is reached or the exit rule is TRUE
}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitExitRule(1, -10, -1)

\subsection*{1.3.10.16 EntryShortProfitPerBar}

\section*{ENTRYSHORTPROFITPERBAR}

\author{
Optimal Signal
}
\begin{tabular}{ll} 
SYNTAX & EntryShortProfitPerBar( ARRAY max drawdown, ARRAY maximum days) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance PER BAR of a system that \\
short the current symbol at the next open bar and cover it when the system drawdown \\
becomes \\
higher than the specified number or the maximum number of bar is reached
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitPerBar(-10, -1)

\title{
1.3.10.17 EntryShortProfitPerBarCond
}

ENTRYSHORTPROFITPERBARCOND

\author{
Optimal Signal
}
\(\left.\begin{array}{ll}\text { SYNTAX } & \begin{array}{l}\text { EntryShortProfitPerBarCond(ARRAY condition, ARRAY max drawdown, } \\
\text { ARRAY maximum days) }\end{array} \\
\text { RETURNS } & \text { NUMERIC ARRAY }\end{array}\right]\)\begin{tabular}{l} 
DESCRIPTION \begin{tabular}{l} 
Calculate the performance PER BAR of a system that short the current symbol at the next \\
open bar and cover it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitPerBarCond(1, -10, -1)

\title{
1.3.10.18 EntryShortProfitPerBarCondExitRule \\ ENTRYSHORTPROFITPERBARCONDEXITRULE
}
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryShortProfitPerBarCondExitRule(ARRAY condition, ARRAY exit, ARRAY \\
max drawdown, ARRAY maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY
\end{tabular} DESCRIPTION \begin{tabular}{l} 
Calculate the performance PER BAR of a system that short the current symbol at the next \\
open bar and cover it when the system drawdown becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE, \\
then move to the bar number (next bar number + last trade holding period)
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitPerBarCondExitRule(1, 1, -10, -1)
1.3.10.19 EntryShortProfitPerBarExitRule
ENTRYSHORTPROFITPERBAREXITRULE
Optimal Signal
\begin{tabular}{ll} 
SYNTAX & \begin{tabular}{l} 
EntryShortProfitPerBarExitRule( ARRAY exit, ARRAY max drawdown, ARRAY \\
maximum days)
\end{tabular} \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
For each bar in the CLOSE array, calculate the performance PER BAR of a system that \\
short the current symbol at the next open bar and cover it when the system drawdown \\
becomes \\
higher than the specified number or the maximum number of bar is reached or the exit rule \\
is TRUE
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE EntryShortProfitPerBarExitRule(1, -10, -1)

\subsection*{1.3.11 Pre-calculated-value}

\subsection*{1.3.11.1 GetPreCalculatedValue 0}

GETPRECALCULATEDVALUE
PreCalculated Value Pre-calculated-value

SYNTAX GetPreCalculatedValue( STRING field)
RETURNS NUMERIC ARRAY
DESCRIPTION Get a pre-calculated value
ADDITIONAL
INFO
EXAMPLE GetPreCalculatedValue("last day volume")

\subsection*{1.3.11.2 GetPreCalculatedValue 1}

\author{
GETPRECALCULATEDVALUE \\ Pre-calculated-value \\ PreCalculated Value
}

SYNTAX GetPreCalculatedValue (STRING field, ARRAY ticker name)
RETURNS NUMERIC ARRAY
DESCRIPTION Get a pre-calculated value
ADDITIONAL
INFO
EXAMPLE GetPreCalculatedValue("last day volume", "A")

\subsection*{1.3.12 Predictions}

\subsection*{1.3.12.1 Predict}
PREDICT
Predict the next value
Predictions

SYNTAX Predict( STRING category, STRING name)
RETURNS NUMERIC ARRAY
DESCRIPTION Return an array containing the predictions of the specified model
ADDITIONAL
INFO
EXAMPLE Predict("category_name", "perdiction_model_name")

\subsection*{1.3.12.2 PredictTicker}

\subsection*{1.3.13 Ranking}

\subsection*{1.3.13.1 Ranking}

RANKING
Ranking System

SYNTAX Ranking( STRING category, STRING name)
RETURNS NUMERIC ARRAY
DESCRIPTION Apply the selected ranking system to the current symbol and returns an array containing the result for each bar

ADDITIONAL
INFO
EXAMPLE Ranking("category_name", "ranking_system_name")

\subsection*{1.3.14 Simulator}

\subsection*{1.3.14.1 BuyPrice}

\section*{BUYPRICE}

Set the buy price

SYNTAX BuyPrice( ARRAY price, ARRAY valid for (bars))
RETURNS
DESCRIPTION Set the buy price.
This limit order is valid for the specified number of bars, after this period the order is canceled.

ADDITIONAL
INFO
EXAMPLE \(\quad\) BuyPrice(22, close * 1.01)

\subsection*{1.3.14.2 CoverPrice}

\section*{COVERPRICE}

Set the cover price

\author{
Simulator
}

SYNTAX CoverPrice( ARRAY price, ARRAY exit at market after (bars))
RETURNS
DESCRIPTION Set the cover price.
This limit order is valid for the specified number of bars, after this period the order is canceled and an order at the market is initiated.

ADDITIONAL
INFO
EXAMPLE \(\quad\) CoverPrice(close * 1.01, 5)

\subsection*{1.3.14.3 Drawdown}

DRAWDOWN

\author{
Simulator
}

Drawdown
\begin{tabular}{ll} 
SYNTAX & Drawdown() \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns the drawdown curve of the current symbol
ADDITIONAL
INFO
EXAMPLE Drawdown()

\subsection*{1.3.14.4 Equity}

EQUITY

\author{
Simulator
}

Equity
\begin{tabular}{ll} 
SYNTAX & Equity() \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns the equity curve of the current symbol, starting from 100
ADDITIONAL INFO

EXAMPLE Equity()

\author{
1.3.14.5 Optimize \\ OPTIMIZE \\ Optimize variables \\ Simulator
}

SYNTAX Optimize( ARRAY variable name, ARRAY min, ARRAY max, ARRAY step)
RETURNS
DESCRIPTION Used by the simulator to optimize a variable
ADDITIONAL
INFO
EXAMPLE \(\quad\) Optimize("a", 1, 5, 1)

\subsection*{1.3.14.6 SellPrice}

SELLPRICE
Set the sell price

SYNTAX SellPrice( ARRAY price, ARRAY exit at market after (bars))
RETURNS
DESCRIPTION Set the sell price.
This limit order is valid for the specified number of bars, after this period the order is canceled and an order at the market is initiated.

ADDITIONAL
INFO
EXAMPLE \(\quad\) SellPrice (close * 1.01, 5)

\subsection*{1.3.14.7 SetSimCommission}
\(\begin{array}{ll}\text { SETSIMCOMMISSION } \\ \text { Simulation commissions } & \text { Simulator }\end{array}\)

SYNTAX SetSimCommission( ENUM commission type, ARRAY value)
RETURNS
DESCRIPTION Update the simulator commission setting
ADDITIONAL INFO

EXAMPLE SetSimCommission(_Percentage, 0.02)

\subsection*{1.3.14.8 SetSimLongRank}

SETSIMLONGRANK

\author{
Simulator
}

Simulation long ranking system

SYNTAX SetSimLongRank( ARRAY array)
RETURNS
DESCRIPTION Override the simulator long ranking system and create a simple long simulation ranking system using the provided array

ADDITIONAL
INFO
EXAMPLE SetSimLongRank(rsi(14))

\subsection*{1.3.14.9 SetSimPeriods}
\begin{tabular}{ll} 
SETSIMPERIODS \\
Simulation periods & Simulator
\end{tabular}

SYNTAX SetSimPeriods( ARRAY start year, ARRAY start month, ARRAY start day, ARRAY end year, ARRAY end month, ARRAY end day)

RETURNS
DESCRIPTION Update the simulator start and end periods
ADDITIONAL
INFO
EXAMPLE \(\quad\) SetSimPeriods(2000, 1, 1, 2009, 11, 23)

\subsection*{1.3.14.10 SetSimRefSymbol}

\author{
SETSIMREFSYMBOL \\ Simulation reference symbol
}

SYNTAX SetSimRefSymbol (ARRAY symbol name)
RETURNS
DESCRIPTION Update the simulator reference symbol
ADDITIONAL INFO

EXAMPLE SetSimRefSymbol("^RUT")

\subsection*{1.3.14.11 SetSimSetting}
\begin{tabular}{ll} 
SETSIMSETTING \\
Simulation settings & Simulator
\end{tabular}

SYNTAX SetSimSetting( ENUM setting item, ARRAY value)
RETURNS
DESCRIPTION Update the simulator settings
ADDITIONAL INFO

EXAMPLE SetSimSetting(_NbPositions, 10)

\subsection*{1.3.14.12 SetSimShortRank}
SETSIMSHORTRANK
Simulation short ranking system

SYNTAX SetSimShortRank( ARRAY array)
RETURNS
DESCRIPTION Override the simulator short ranking system and create a simple short simulation ranking system using the provided array

ADDITIONAL
INFO
EXAMPLE \(\quad\) SetSimShortRank(1/rsi(14))

\subsection*{1.3.14.13 SetSimStop}
\begin{tabular}{ll} 
SETSIMSTOP \\
Simulation stops & Simulator
\end{tabular}

SYNTAX SetSimStop( ENUM stop type, ENUM stop entry, ARRAY value, ARRAY reentry) RETURNS

DESCRIPTION Update the simulator stops
ADDITIONAL INFO

EXAMPLE SetSimStop(_StopLoss, _Percent, 20, 1)

\subsection*{1.3.14.14 SetSimTiming}
\begin{tabular}{ll} 
SETSIMTIMING \\
Simulation timing & Simulator
\end{tabular}

SYNTAX SetSimTiming( ENUM entry type, ENUM entry price, ARRAY decalage)
RETURNS
DESCRIPTION Update the simulator entries and exits timing
ADDITIONAL INFO

EXAMPLE SetSimTiming(_Buy,_Open, 1)
1.3.14.15 ShortPrice
SHORTPRICE
Set the short price

SYNTAX ShortPrice( ARRAY price, ARRAY valid for (bars))
RETURNS
DESCRIPTION Set the short price.
This limit order is valid for the specified number of bars, after this period the order is canceled.

ADDITIONAL
INFO
EXAMPLE \(\quad\) ShortPrice(22, close * 1.01)

\subsection*{1.3.15 String}

\subsection*{1.3.15.1 GetDataString}

GETDATASTRING
String Database Field

SYNTAX GetDataString( STRING database name, STRING field name, ARRAY regular expression)

RETURNS TEXT ARRAY
DESCRIPTION Get a string array from a database field
ADDITIONAL
INFO
EXAMPLE GetDataString("database_name", "field_name", "buy")

\subsection*{1.3.15.2 GetDataStringIndex}
GETDATASTRINGINDEX
String Database Field Index

SYNTAX GetDataStringIndex( STRING database name, STRING field name, ARRAY index, ARRAY regular expression)

RETURNS TEXT ARRAY
DESCRIPTION Get a string array from a database field, index parameter specify the index of the data (When using for example intraday database with an historical timeframe)

ADDITIONAL
INFO
EXAMPLE GetDataStringIndex("database_name", "field_name", 0, "buy")

\subsection*{1.3.15.3 GetDataStringInside}

\author{
GETDATASTRINGINSIDE \\ String Database Field Index Inside
}

SYNTAX GetDataStringInside (STRING database name, STRING field name, ARRAY low, ARRAY high, ENUM periodtype, ARRAY regular expression)

RETURNS TEXT ARRAY
DESCRIPTION Get a string array from a database field (Accept only values which date are inside the specified limits)

ADDITIONAL
INFO
EXAMPLE GetDataStringInside("database_name", "field_name", 0, 10, P_Hour, "buy")

\subsection*{1.3.15.4 StringContains}
STRINGCONTAINS
String Contains

\section*{SYNTAX StringContains( ARRAY string, ARRAY string) \\ RETURNS NUMERIC ARRAY}

DESCRIPTION Returns 1 if the first string parameter contains the second string parameter, 0 otherwise
ADDITIONAL INFO

EXAMPLE StringContains("HELLO", "HE")
1.3.15.5 StringEqual
STRINGEQUALString Equals
SYNTAX StringEqual( ARRAY string, ARRAY string)
RETURNS NUMERIC ARRAY

DESCRIPTION Returns 1 if the two strings are equal, 0 otherwise
ADDITIONAL INFO

EXAMPLE StringEqual("HELLO", "HELLO")

\subsection*{1.3.15.6 StringExtract}
STRINGEXTRACT
String Extract

SYNTAX StringExtract( ARRAY string, ARRAY value, ARRAY value)
RETURNS TEXT ARRAY
DESCRIPTION Extract a string from the string in the first parameter, starting at the specified number in the second parameter and ending at the specified number in the third parameter

ADDITIONAL
INFO
EXAMPLE StringExtract("HELLO", 1, 3)

\subsection*{1.3.15.7 StringExtractEnds}
STRINGEXTRACTENDSparameter string

ADDITIONAL

INFO
EXAMPLE StringExtractEnds("HELLO", 2)
1.3.15.8 StringExtractStart
STRINGEXTRACTSTART
String Extract Start
SYNTAX StringExtractStart( ARRAY string, ARRAY value)
RETURNS TEXT ARRAYDESCRIPTION Extract a string from the string in the first parameter, starting at 0 and ending at thespecified number in the second parameter
ADDITIONALINFO
EXAMPLE StringExtractStart("HELLO", 2)

\subsection*{1.3.15.9 StringInsert}
\begin{tabular}{l|l} 
STRINGINSERT & String \\
String Insert
\end{tabular}

\section*{SYNTAX StringInsert (ARRAY string, ARRAY toinsert, ARRAY index) \\ RETURNS TEXT ARRAY}

DESCRIPTION Insert in the first parameter the second parameter string at the specified index number
ADDITIONAL INFO

EXAMPLE StringInsert(" EVERYBODY", "HELLO", 0)

\subsection*{1.3.15.10 StringLength}
STRINGLENGTH
String Length
SYNTAX StringLength( ARRAY string)

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the length of the string
ADDITIONAL INFO

EXAMPLE StringLength("HELLO")
1.3.15.11 StringReplace
STRINGREPLACE
String Replace
SYNTAX StringReplace( ARRAY string, ARRAY oldvalue, ARRAY newvalue) ..... RETURNS TEXT ARRAYDESCRIPTION Replace in the first parameter string, oldValue with newValueADDITIONALINFO
EXAMPLE StringReplace("HELLO", "O", "OOOO")

\subsection*{1.3.16 Symbol Info}

\subsection*{1.3.16.1 Address}

\section*{ADDRESS}
Address
\begin{tabular}{ll} 
SYNTAX & Address() \\
RETURNS & TEXT ARRAY \\
DESCRIPTION & Returns the symbol's Address
\end{tabular}

ADDITIONAL
INFO
EXAMPLE Address()

\subsection*{1.3.16.2 Country}

\section*{COUNTRY}

Country
\begin{tabular}{ll} 
SYNTAX & Country() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Country
ADDITIONAL INFO

EXAMPLE Country()

\subsection*{1.3.16.3 Currency}
\begin{tabular}{ll} 
CURRENCY \\
Currency & Symbol Info
\end{tabular}
SYNTAX Currency()

RETURNS TEXT ARRAY
DESCRIPTION Returns the symbol's Currency
ADDITIONAL
INFO
EXAMPLE Currency()

\subsection*{1.3.16.4 FullName}
FULLNAME
FullName
\begin{tabular}{ll} 
SYNTAX & FullName() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's FullName
ADDITIONAL INFO

EXAMPLE FullName()
1.3.16.5 GetPreCalculatedValueString 0 ..... 0
1.3.16.6 GetPreCalculatedValueString 1
1.3.16.7 Group
GROUP
Group
SYNTAX Group()
RETURNS TEXT ARRAY
DESCRIPTION Returns the symbol's Group
ADDITIONALINFO
EXAMPLE ..... Group()

\subsection*{1.3.16.8 Index}
\begin{tabular}{ll} 
INDEX \\
Index & Symbol Info
\end{tabular}
SYNTAX Index()

RETURNS TEXT ARRAY
DESCRIPTION Returns the symbol's Index
ADDITIONAL
INFO
EXAMPLE Index()

\subsection*{1.3.16.9 Industry}
INDUSTRY
Industry
SYNTAX Industry()

RETURNS TEXT ARRAY
DESCRIPTION Returns the symbol's Industry
ADDITIONAL
INFO
EXAMPLE Industry()

\subsection*{1.3.16.10 Market}

MARKET
Market

SYNTAX Market()
RETURNS TEXT ARRAY
DESCRIPTION Returns the symbol's Market
ADDITIONAL INFO

EXAMPLE Market()

\subsection*{1.3.16.11 Name}

NAME
Name
\begin{tabular}{ll} 
SYNTAX & Name() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Name
ADDITIONAL INFO

EXAMPLE Name()

\subsection*{1.3.16.12 Name1}

NAME1
Symbol Info
Name 1
\begin{tabular}{ll} 
SYNTAX & Name1() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Name1
ADDITIONAL INFO

EXAMPLE Name1()
1.3.16.13 Name2NAME2Name2
\begin{tabular}{ll} 
SYNTAX & Name2() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Name2
ADDITIONAL INFO
```

EXAMPLE Name2()

```

\subsection*{1.3.16.14 Name3}

NAME3
Symbol Info
Name3
\begin{tabular}{ll} 
SYNTAX & Name3() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Name3
ADDITIONAL INFO

EXAMPLE Name3()

\subsection*{1.3.16.15 Sector}

SECTOR
Sector
\begin{tabular}{ll} 
SYNTAX & Sector() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Sector
ADDITIONAL INFO

EXAMPLE Sector()

\subsection*{1.3.16.16 Website}

WEBSITE
Website
\begin{tabular}{ll} 
SYNTAX & Website() \\
RETURNS & TEXT ARRAY
\end{tabular}

DESCRIPTION Returns the symbol's Website
ADDITIONAL INFO

EXAMPLE Website()

\subsection*{1.3.17 Technical}

\subsection*{1.3.17.1 AvgIf 0}

\section*{AVGIF}

Average If
\begin{tabular}{ll} 
SYNTAX & AvgIf( ARRAY condition, ARRAY array) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Calculates, when condition is TRUE, the average of the ARRAY for all the lookback \\
periods (current bar is included)
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE \(\quad\) AvgIf(perf(close) \(>0\), close)

\subsection*{1.3.17.2 AvgIf 1}

AVGIF
Average If
Technical

SYNTAX AvgIf( ARRAY condition, ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates, when condition is TRUE, the average of the ARRAY for the specified number of lookback periods (current bar is included) (When the condition is true)

\author{
ADDITIONAL \\ INFO
}

EXAMPLE \(\quad \operatorname{AvgIf}(\) perf(close \()>0\), close, 10)
1.3.17.3 BarsSince
BARSSINCE
Bars Since
Technical

SYNTAX BarsSince( ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates the number of bars that have passed since the array was different from 0
ADDITIONAL
INFO
EXAMPLE \(\quad\) BarsSince \((\) perf(close) > 10)

\subsection*{1.3.17.4 Count}

COUNT
Technical
Count
SYNTAX Count()

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of bars
ADDITIONAL
INFO
EXAMPLE Count()

\subsection*{1.3.17.5 Cross}
CROSS
Cross

Cross
Technical
\begin{tabular}{ll} 
SYNTAX & Cross( ARRAY, ARRAY ) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns ' 1 ', when the first array crosses above the second array, otherwise the result is ' 0 ' ADDITIONAL INFO

EXAMPLE Cross(sma(14), sma(21))

\subsection*{1.3.17.6 GFun}
GFUN
Gaussian

SYNTAX GFun( ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the gaussian for the specified array
ADDITIONAL
INFO
EXAMPLE GFun(volume, 30)

\author{
1.3.17.7 HhvLb 0 \\ HHVLB \\ Highest Since
}
\begin{tabular}{ll} 
SYNTAX & HhvLb( ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns the number of bars since the array reached its highest value ADDITIONAL INFO

EXAMPLE HhvLb(close)

\author{
1.3.17.8 HhvLb 1 \\ HHVLB \\ Highest Since
}
\begin{tabular}{ll} 
SYNTAX & HhvLb( ARRAY array, ARRAY period) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Returns the number of bars since the array reached its highest value over the specified \\
period
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE \(\quad \mathrm{HhvLb}\) (close, 20)

\subsection*{1.3.17.9 Iff}

IFF
Technical
IF

SYNTAX Iff(ARRAY, ARRAY, ARRAY)
RETURNS NUMERIC ARRAY
DESCRIPTION A conditional function that returns the value of the first parameter if condition is true (different from 0 ), if condition is false then it returns the value of the second parameter.

\section*{ADDITIONAL}

INFO
EXAMPLE \(\quad \operatorname{Iff}(r s i(14)>50,1,0)\)

\subsection*{1.3.17.10 IsFalse}

ISFALSE
Technical
Is False

SYNTAX IsFalse( ARRAY array, ARRAY lag)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1 if all the values between the current bar and the lag bar are inferior or equal to 0
ADDITIONAL
INFO
EXAMPLE IsFalse(perf(close, 10), 20)
1.3.17.11 IsNa
ISNA ..... Technical
Is NA
SYNTAX IsNa(ARRAY value)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1 if all elements in the array equal to NA
ADDITIONALINFO
EXAMPLE IsNa(1)
1.3.17.12 IsNaN
ISNAN Technical Is NaN
SYNTAX IsNaN (ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1 if all elements in the array equal to NaN
ADDITIONALINFO
EXAMPLE ..... IsNaN(1)

\subsection*{1.3.17.13 IsNoNa}

\section*{ISNONA}

Is not NA

SYNTAX IsNoNa( ARRAY value)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 0 if at least one elements in the array is equal to NA
ADDITIONAL
INFO
EXAMPLE IsNoNa(1)

\subsection*{1.3.17.14 IsNoNaN}
ISNONAN Technical
Is not NaN
SYNTAX IsNoNaN( ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Returns 0 if at least one elements in the array is equal to NaN
ADDITIONAL INFO

EXAMPLE IsNoNaN(1)

\subsection*{1.3.17.15 IsNoNull}
ISNONULL
Is not NULL Technical
\begin{tabular}{ll} 
SYNTAX & IsNoNull( ARRAY value) \\
RETURNS & NUMERIC ARRAY
\end{tabular}

DESCRIPTION Returns 0 if at least one elements in the array is equal to 0
ADDITIONAL INFO

EXAMPLE IsNoNull(1)

\subsection*{1.3.17.16 IsNoZero}

ISNOZERO
Technical
Is not Zero

SYNTAX IsNoZero( ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 0 if at least one elements in the array is equal to 0
ADDITIONAL INFO

EXAMPLE IsNoZero(1)

\subsection*{1.3.17.17 IsNull}
ISNULL
SYNTAX IsNull( ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1 if all elements in the array equal to 0
ADDITIONAL INFO

EXAMPLE IsNull(1)
1.3.17.18 IsTrue
ISTRUE
Technical
Is True
Technical

SYNTAX IsTrue( ARRAY array, ARRAY lag)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns 1 if all the values between the current bar and the lag bar are superior to 0
ADDITIONAL
INFO
EXAMPLE \(\quad\) IsTrue(perf(close, 10), 20)

\subsection*{1.3.17.19 LastNotNullValue}

\author{
LASTNOTNULLVALUE \\ Last not null
}
SYNTAX LastNotNullValue( ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the last (not equal to 0 ) value of the ARRAY
ADDITIONAL INFO

EXAMPLE LastNotNullValue(close)

\subsection*{1.3.17.20 LastValue}

LASTVALUE
Last Value
SYNTAX LastValue( ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the last value of the ARRAY
ADDITIONAL
INFO
EXAMPLE LastValue(close)

\subsection*{1.3.17.21 LIvLb 0}

LLVLB
Lowest Since

SYNTAX LlvLb(ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the number of bars since the array reached its lowest value
ADDITIONAL INFO

EXAMPLE LlvLb(close)

\subsection*{1.3.17.22 LIvLb 1}

LLVLB
Lowest Since
\begin{tabular}{ll} 
SYNTAX & LlvLb( ARRAY array, ARRAY period) \\
RETURNS & NUMERIC ARRAY \\
DESCRIPTION & \begin{tabular}{l} 
Returns the number of bars since the array reached its lowest value over the specified \\
period
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE LlvLb(close, 20)

\subsection*{1.3.17.23 NaNtoLast}

NANTOLAST
NaN to Last
SYNTAX NaNtoLast (ARRAY array)

RETURNS NUMERIC ARRAY
DESCRIPTION Update the NA values with the last non NaN values
ADDITIONAL
INFO
EXAMPLE \(\quad\) NaNtoLast(perf(close, -10 ))

\subsection*{1.3.17.24 NaNtoZero}

NANTOZERO
NaN values to Zero

SYNTAX NaNtoZero( ARRAY array, ARRAY type)
RETURNS NUMERIC ARRAY
DESCRIPTION Change NaN value to Zero in the specified array.
Set zero to the parameter 'type' to update only the firsts NaN , Set one to update all NaN values

ADDITIONAL
INFO
EXAMPLE NaNtoZero(rsi(14), 0)

\subsection*{1.3.17.25 Perf}

PERF
Performance over a specified period
Technical

SYNTAX Perf( ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the performance of the array for the specified period (k-step Return)
ADDITIONAL
INFO
EXAMPLE Perf(close, 20)

\subsection*{1.3.17.26 PerfD}
PERFD
Average Daily Performance

SYNTAX PerfD(ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the average daily performance of the array for the specified period ( \(k\)-step Trend)
ADDITIONAL
INFO
EXAMPLE \(\quad\) PerfD (close, 20)

\subsection*{1.3.17.27 Rank}

RANK
Rank
Technical

SYNTAX Rank( ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the rank of the stock for this array, rank ranges are from 0 to 100 (To use in simulation)

ADDITIONAL
INFO
EXAMPLE Rank(close)

\subsection*{1.3.17.28 Ref}

\section*{REF}

Technical
Lag

SYNTAX Ref(ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION References a previous or subsequent element in a ARRAY. A negative period references X periods in the future; a positive period references X periods ago (Replace empty values in the ARRAY with NA)

ADDITIONAL
INFO
EXAMPLE \(\quad\) Ref(close, 1)

\subsection*{1.3.17.29 RefZero}
REFZERO

SYNTAX RefZero( ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION References a previous or subsequent element in a ARRAY. A negative period references X periods in the future; a positive period references X periods ago (Replace empty values in the ARRAY with 0 )

\author{
ADDITIONAL \\ INFO
}

EXAMPLE RefZero(close, 1)

\subsection*{1.3.17.30 RemoveSameSignals 0}
REMOVESAMESIGNALS
Remove Excessive Signals
\begin{tabular}{ll} 
SYNTAX & RemoveSameSignals( ARRAY array, ARRAY array) \\
RETURNS & NUMERIC ARRAY
\end{tabular}\(\quad\)\begin{tabular}{l} 
DESCRIPTION \\
\begin{tabular}{l} 
removes excessive signals. \\
Returns 1 on the first occurence of 'true' signal in the first array. \\
then Returns 0 until the second array is 'true' even if there are 'true' signals in the first \\
array.
\end{tabular}
\end{tabular}

ADDITIONAL
INFO
EXAMPLE RemoveSameSignals(array, array)

\subsection*{1.3.17.31 RemoveSameSignals 1}
REMOVESAMESIGNALS
Technical
Remove Excessive Signals

SYNTAX RemoveSameSignals( ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION removes excessive signals.
Returns 1 on the first occurence of 'true' signal in the first array. then Returns 0 until the second array become 'false' then 'true'.

ADDITIONAL
INFO
EXAMPLE RemoveSameSignals(array)

\subsection*{1.3.17.32 RFun}
RFUN
Relative Volatility

SYNTAX RFun( ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the relative volatility of the specified array
ADDITIONAL
INFO
EXAMPLE RFun(close, 30)

\subsection*{1.3.17.33 SumIf 0}

SUMIF
Summation If
Technical

SYNTAX SumIf(ARRAY condition, ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates, when condition is TRUE, a cumulative sum of the ARRAY for all the lookback periods (current bar is included)

ADDITIONAL
INFO
EXAMPLE \(\quad\) SumIf(rsi(14) > 50, 1)

\subsection*{1.3.17.34 SumIf 1}

SUMIF
Summation If

SYNTAX SumIf( ARRAY condition, ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Calculates, when condition is TRUE, a cumulative sum of the ARRAY for the specified number of lookback periods (current bar is included)

ADDITIONAL
INFO
EXAMPLE \(\quad \operatorname{SumIf}(\mathrm{rsi}(14)>50,1,20)\)
1.3.17.35 ValueVALUEValue
SYNTAX Value( ARRAY array, ARRAY bar number)

RETURNS NUMERIC ARRAY
DESCRIPTION Returns the value of the specified ARRAY for the bar number X
ADDITIONAL INFO

EXAMPLE Value(close, 5)

\author{
1.3.17.36 ValueWhen 0 \\ VALUEWHEN \\ Value When
}

SYNTAX ValueWhen( ARRAY expression, ARRAY array, ARRAY period)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the value of the array, when the expression is TRUE, of the n -th most recent occurrence

ADDITIONAL
INFO
EXAMPLE ValueWhen(cross( close, ma(close, 20)), rsi(14), 10)

\author{
1.3.17.37 ValueWhen 1 \\ VALUEWHEN \\ Value When
}

SYNTAX ValueWhen( ARRAY expression, ARRAY array)
RETURNS NUMERIC ARRAY
DESCRIPTION Returns the value of the array, when the expression is TRUE, of the last occurrence
ADDITIONAL
INFO
EXAMPLE ValueWhen(cross(close, ma(close, 20)), rsi(14))

\subsection*{1.4 QuantShare CSharp \& JScript.Net}

\subsection*{1.4.1 Advanced Money Management}

\subsection*{1.4.1.1 OnEndPeriod}

QuantShare API Documentation

\section*{OnEndPeriod Members}

Manage your trading system using the advanced money management script.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline TradingSystemSettings (of type MMTradingSystemSettings) & Trading system settings \\
\hline Variables (of type MMVariables) & A class that is used to manipulate variables \\
\hline Divers (of type MMDivers) & Metrics concerning the porftolio \\
\hline Data (of type MMData) & Divers functions \\
\hline Orders (of type MMOrders) & A class that is used to retrieve data \\
\hline Functions (of type MMOnEndPeriod) & Functions related to the OnEndPeriod event \\
\hline
\end{tabular}

\subsection*{1.4.1.2 OnEndSimulation}

QuantShare API Documentation

\section*{OnEndSimulation Members}

Manage your trading system using the advanced money management script.
Fields
\begin{tabular}{|l|l|}
\hline TradingSystemSettings (of type MMTradingSystemSettings) & Trading system settings \\
\hline Variables (of type MMVariables) & A class that is used to manipulate variables \\
\hline Portfolio (of type MMPortfolio) & Metrics concerning the porftolio \\
\hline Divers (of type MMDivers) & Divers functions \\
\hline Functions (of type MMOnEndSimulation) & Functions related to the OnEndSimulation event \\
\hline
\end{tabular}

\subsection*{1.4.1.3 OnStartSimulation}

QuantShare API Documentation

\section*{OnStartSimulation Members}

Manage your trading system using the advanced money management script.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline TradingSystemSettings (of type MMTradingSystemSettings) & Trading system settings \\
\hline Variables (of type MMVariables) & A class that is used to manipulate variables \\
\hline Portfolio (of type MMPortfolio) & Metrics concerning the porftolio \\
\hline Divers (of type MMDivers) & Divers functions \\
\hline Optimize (of type MMOptimize) & Functions related to the OnStartSimulation event \\
\hline A class that can be used to define variables that will be used in the \\
optimization
\end{tabular}

\subsection*{1.4.1.4 OnClosePosition}

QuantShare API Documentation

\section*{OnClosePosition Members}

Manage your trading system using the advanced money management script.
Fields
\begin{tabular}{|l|l|}
\hline TradingSystemSettings (of type MMTradingSystemSettings) & Trading system settings \\
\hline Variables (of type MMVariables) & A class that is used to manipulate variables \\
\hline Divers (of type MMDivers) (of type MMPortfolio) & Metrics concerning the porftolio \\
\hline Data (of type MMData) & Divers functions \\
\hline Orders (of type MMOrders) & A class that is used to retrieve data \\
\hline Functions (of type MMOnClosePosition) & Functions related to the OnClosePosition event \\
\hline
\end{tabular}

\subsection*{1.4.1.5 OnNewPosition}

QuantShare API Documentation

\section*{OnNewPosition Members}

Manage your trading system using the advanced money management script.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline TradingSystemSettings (of type MMTradingSystemSettings) & Trading system settings \\
\hline Variables (of type MMVariables) & A class that is used to manipulate variables \\
\hline Dortfolio (of type MMPortfolio) & Metrics concerning the porftolio \\
\hline Data (of type MMData) & Divers functions \\
\hline Orders (of type MMOrders) & A class that is used to retrieve data \\
\hline NewPosition (of type MMNewPosition) & A class that is used to generate orders \\
\hline Flasctions (of type MMOnNewPosition) & Functions related to the OnNewPosition event \\
\hline
\end{tabular}

\subsection*{1.4.1.6 Members}

\subsection*{1.4.1.6.1 MMDivers}

\section*{QuantShare API Documentation}

\section*{MMDivers Members}

Divers functions
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline IsFirstBar (of type Boolean) & Specify whether the current bar is the first one or not \\
\hline CurrentDate (of type DateTime) & Current Date \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) OUutput (returns Void) & \begin{tabular}{l} 
(parameterless) \\
Set Output
\end{tabular} \\
\hline =MovingAverage (returns Double) & \begin{tabular}{l} 
(array Double[], period Int32) \\
Calculate the moving average of the provided array and for the \\
specified period
\end{tabular} \\
\hline\(=\) Max (returns Double) & \begin{tabular}{l} 
(array Double[], period Int32) \\
Calculate the sum of the provided array and for the specified period
\end{tabular} \\
\hline (array Double[], period Int32) \\
\hline Calculate the maximum value of the provided array and for the \\
specified period
\end{tabular}

\subsection*{1.4.1.6.2 MMOnEndPeriod}

\section*{QuantShare API Documentation}

\section*{MMOnEndPeriod Members}

Functions related to the OnEndPeriod event

\section*{Parent}

\section*{Properties}
\begin{tabular}{|l|l|}
\hline AvailableCashForLongPositions (of type Double) & Get available cash for long positions \\
\hline AvailableCashForShortPositions (of type Double) & Get available cash for short positions \\
\hline NbAvailableShortPositions (of type Int32) & Get available number of long positions \\
\hline (of type Int32) & Get available number of short positions \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\because\) AddMetric (returns Void) & \begin{tabular}{l}
(Metric name String, Metric value for the current period (date) Double) \\
Add a time-series metric to the simulation
\end{tabular} \\
\hline =QupdateNumberOfPositions (returns Void) & \begin{tabular}{l}
(number of positions Int32) \\
Update the maximum number of positions within the portfolio
\end{tabular} \\
\hline = UpdateMarginFactor (returns Int32) & \begin{tabular}{l}
(margin factor Double) \\
Update the margin factor
\end{tabular} \\
\hline =QupdateMarginFactor (returns Int32) & \begin{tabular}{l}
(margin factor (higher or equal to 1) Double, order type used to scale-in or scale-out positions _TradingOrder, do not scale positions if the position size is less than minPerPosition Double) \\
Update the margin factor and scale-in or scale-out existing positions to meet the new requirements
\end{tabular} \\
\hline = UpdatePercentInvested (returns Int32) & \begin{tabular}{l}
(percent invested (between 0 and 100) Double) \\
Update the percentage invested value
\end{tabular} \\
\hline \# \#UpdatePercentInvested (returns Int32) & \begin{tabular}{l}
(percent invested (between 0 and 100) Double, order type used to scale-in or scale-out positions _TradingOrder, do not scale positions if the position size is less than minPerPosition Double) \\
Update the percentage invested value and scale-in or scale-out existing positions to meet the new requirements
\end{tabular} \\
\hline \(\bigcirc\) SkipPeriods (returns Void) & \begin{tabular}{l}
(Number of periods Int32) \\
Skip money monagement execution for the specified number of periods
\end{tabular} \\
\hline = RejectNewPositionsDuringTheNextPeriods (returns Void) & (Number of periods Int32) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Instruct the simulator to not open new positions during the specified number of periods \\
\hline = CloseAllPositions (returns Void) & (Number of periods to skip executing OnEndPeriod script Int32) Close all portfolio's positions \\
\hline \#CloseAllPositions (returns Void) & \begin{tabular}{l}
(Number of periods to skip executing OnEndPeriod script Int32, Trading order _TradingOrder) \\
Close all portfolio's positions
\end{tabular} \\
\hline \(\pm\) GetNumberShares (returns Int32) & \begin{tabular}{l}
(Symbol name String, Long or Short Boolean, Trading order _TradingOrder) \\
Get the approximative number of shares to be bought or shorted
\end{tabular} \\
\hline \# AddLongPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Number of shares Int32, Custom value Double, Trading order _TradingOrder) \\
Add a new long position
\end{tabular} \\
\hline \#AddLongPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Custom value Double, Trading order _TradingOrder) \\
Add a new long position - Let the simulator automatically choose the number of shares to buy
\end{tabular} \\
\hline =AddShortPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Number of shares Int32, Custom value Double, Trading order _TradingOrder) \\
Add a new short position
\end{tabular} \\
\hline = AddShortPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Custom value Double, Trading order _TradingOrder) \\
Add a new short position - Let the simulator automatically choose the number of shares to short
\end{tabular} \\
\hline = SellPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Number of shares Int32, Custom value Double, Trading order _TradingOrder) \\
Sell a long position
\end{tabular} \\
\hline = SellPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Custom value Double, Trading order _TradingOrder) \\
Sell a long position - Sell all shares
\end{tabular} \\
\hline = CoverPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Number of shares Int32, Custom value Double, Trading order _TradingOrder) \\
Cover a short position
\end{tabular} \\
\hline =CoverPosition (returns Boolean) & \begin{tabular}{l}
(Symbol name String, Custom value Double, Trading order _TradingOrder) \\
Cover a short position - Cover all shares
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.3 MMOnEndSimulation}

QuantShare API Documentation

\section*{MMOnEndSimulation Members}

Functions related to the OnEndSimulation event
Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) AddMetric (returns Void) & (Metric name String, Metric value Double) \\
& Add a metric to the simulator \\
\hline
\end{tabular}

\subsection*{1.4.1.6.4 MMOptimize}

QuantShare API Documentation

\section*{MMOptimize Members}

A class that can be used to define variables that will be used in the optimization
Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline \#OptimizeText (returns Void) & \begin{tabular}{l} 
(variable name String, values String[]) \\
Create an optimizable variable, use the Variable Class to get the \\
value
\end{tabular} \\
\hline\(=\) OptimizeDouble (returns Void) & \begin{tabular}{l} 
(variable name String, start value Double, end value Double, \\
step value Double) \\
Create an optimizable variable, use the Variable Class to get the \\
value
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.5 MMPortfolio}

\section*{QuantShare API Documentation}

\section*{MMPortfolio Members}

Metrics concerning the porftolio
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Equity (of type Double) & Current portfolio equity \\
\hline Drawdown (of type Double) & Current portfolio drawdown \\
\hline PercentageInvested (of type Double) & Current portfolio percentage of invested money \\
\hline NbPositions (of type Int32) & Current number of positions within the portfolio \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\cdots\) IsInPortfolio (returns Boolean) & \begin{tabular}{l}
(symbol name String, Long or Short position Boolean) \\
Returns whether a security symbol is in the portfolio
\end{tabular} \\
\hline \# IsInPendingOrders (returns Boolean) & \begin{tabular}{l}
(symbol name String, Long or Short list Boolean) \\
Returns whether a security symbol is in the pending orders list
\end{tabular} \\
\hline \(=\) GetPosition (returns MMPosition) & \begin{tabular}{l}
(symbol name String) \\
Get a position from the portfolio
\end{tabular} \\
\hline =GetAllPositions (returns MMPosition[]) & \begin{tabular}{l}
(parameterless) \\
Get all positions generated by the simulator - open and closed positions
\end{tabular} \\
\hline =GetLastClosedPositions (returns MMPosition[]) & \begin{tabular}{l}
(parameterless) \\
Get the positions that were closed in the last period
\end{tabular} \\
\hline =GetOpenPositions (returns MMPosition[]) & \begin{tabular}{l}
(parameterless) \\
Get the current portfolio positions
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.6 MMTradingSystemSettings}

QuantShare API Documentation

\section*{MMTradingSystemSettings Members}

Trading system settings
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline InitialEquity (of type Double) & Portfolio initial equity \\
\hline StartDate (of type DateTime) & Simulation start date \\
\hline NbPositions (of type Int32) & Simulation end date \\
\hline PercentToInvest (of type Double) & Portfolio maximum number of positions percent of capital to invest \\
\hline
\end{tabular}

\subsection*{1.4.1.6.7 MMVariables}

\section*{QuantShare API Documentation}

\section*{MMVariables Members}

A class that is used to manipulate variables
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline [String] (of type Object) & Get a variable value \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) SSetVariable (returns Void) & \begin{tabular}{l} 
(Variable Name String, Value Object) \\
Assign a value to a variable
\end{tabular} \\
\hline =GetVariable (returns Object) & \begin{tabular}{l} 
(Variable Name String) \\
Get a variable value
\end{tabular} \\
\hline =IsVariableExists (returns Boolean) & \begin{tabular}{l} 
(Variable Name String) \\
Returns true if the variable exist, otherwise returns false
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.8 MMOnNewPosition}

QuantShare API Documentation

\section*{MMOnNewPosition Members}

Functions related to the OnNewPosition event
Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetNextTrade (returns Void) & (parameterless) \\
\hline\(=\) RejectAllTradesForThisPeriod (returns Void) & (parameterless) \\
\hline\(=\) Reject all trades for the current period (date) \\
\hline & \begin{tabular}{l} 
(Number of shares Int32) \\
Update the number of shares to buy/short
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.9 MMExitPosition}

\section*{QuantShare API Documentation}

\section*{MMExitPosition Members}

\section*{Parent}

\section*{Properties}
\begin{tabular}{|c|c|}
\hline TEntryDate (of type DateTime) & Current position entry date \\
\hline TSignalEntryDate (of type DateTime) & Current position signal date. Signal date is the date where the symbol buy/short value became TRUE. Entry date is the date where the symbol was bought or shorted. The Signal date could be different than the Entry date when the buy/short entry price could not be met on the signal date. \\
\hline Symbol (of type String) & Current position symbol \\
\hline PrositionEquity (of type Double) & Current position size \\
\hline - Performance (of type Double) & Current position performance \\
\hline - EntryPrice (of type Double) & Current position entry price \\
\hline 國BarsSinceEntry (of type Int32) & Current position number of bars held \\
\hline M MAE (of type Double) & Current position maximum adverse excursion \\
\hline TMFE (of type Double) & Current position maximum favorable excursion \\
\hline - \({ }^{\text {NbShares ( }}\) ( f type Int32) & Current position number of shares \\
\hline TMaximumDrawdown (of type Double) & Current position maximum drawdown \\
\hline NumberOfScalein (of type Int32) & Current position number of scale-in trades \\
\hline NumberofScaleout (of type Int32) & Current position number of scale-out trades \\
\hline T LastPrice (of type Double) & Current position last price \\
\hline Var1 (of type Double) & Custom variable \\
\hline - Var2 (of type Double) & Custom variable \\
\hline Var3 (of type Double) & Custom variable \\
\hline Var4 (of type Double) & Custom variable \\
\hline
\end{tabular}

\section*{Methods}
\(\cong\) GetValueFromFormula (returns Double)

\section*{(parameterless)}

Parse a vector-based formula and returns the vector value for the current date. Example: GetValueFromFormula('a = rsi(14);', 'a'); \(>\) to get the RSI value of the current symbol for the current date.

\subsection*{1.4.1.6.10 MMNewPosition}

QuantShare API Documentation

\section*{MMNewPosition Members}

Class containing information about the position the simulator is about to buy/short
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline IsLong (of type Boolean) & Specify whether the new position is Long or Short \\
\hline Price (of type Double) & The new position price \\
\hline NemainingCash (of type Double) & The number of shares for the current position \\
\hline NbPositions (of type Int32) & The number of positions in the portfolio \\
\hline
\end{tabular}

\subsection*{1.4.1.6.11 MMOnClosePosition}

QuantShare API Documentation

\section*{MMOnClosePosition Members}

Functions related to the OnClosePosition event
Parent

\section*{Methods}
\begin{tabular}{|c|c|}
\hline = AddTradeMetric (returns Void) & \begin{tabular}{l}
(Metric name String, Metric value Double) \\
Add a trade metric
\end{tabular} \\
\hline \(\cong\) GetPositionDetails (returns MMExitPosition) & \begin{tabular}{l}
(parameterless) \\
Get details about the current position
\end{tabular} \\
\hline \#DontCloseTheCurrentPosition (returns Void) & \begin{tabular}{l}
(parameterless) \\
Restrict the simulator from exiting the current position
\end{tabular} \\
\hline = DontClosePositionsForThisPeriod (returns Void) & \begin{tabular}{l}
(parameterless) \\
Restrict the simulator from exiting all the positions within this period (date)
\end{tabular} \\
\hline =QupdateNumberOfShares (returns Boolean) & \begin{tabular}{l}
(Number of shares Int32) \\
Update the number of shares to sell/cover
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.12 MMPosition}

\section*{QuantShare API Documentation}

MMPosition Members

\section*{Parent}

\section*{Properties}
\begin{tabular}{|c|c|}
\hline VntryDate (of type DateTime) & Current position entry date \\
\hline SignalEntryDate (of type DateTime) & Current position signal date. Signal date is the date where the symbol buy/short value became TRUE. Entry date is the date where the symbol was bought or shorted. The Signal date could be different than the Entry date when the buy/short entry price could not be met on the signal date. \\
\hline Symbol (of type String) & Current position symbol \\
\hline PositionEquity (of type Double) & Current position size \\
\hline Performance (of type Double) & Current position performance \\
\hline EntryPrice (of type Double) & Current position entry price \\
\hline BarsSinceEntry (of type Int32) & Current position number of bars held \\
\hline MAE (of type Double) & Current position maximum adverse excursion \\
\hline MFE (of type Double) & Current position maximum favorable excursion \\
\hline NbShares (of type Int32) & Current position number of shares \\
\hline MaximumDrawdown (of type Double) & Current position maximum drawdown \\
\hline NumberOfScaleIn (of type Int32) & Current position number of scale-in trades \\
\hline NumberOfScaleOut (of type Int32) & Current position number of scale-out trades \\
\hline LastPrice (of type Double) & Current position last price \\
\hline Var1 (of type Double) & Custom variable \\
\hline Var2 (of type Double) & Custom variable \\
\hline Var3 (of type Double) & Custom variable \\
\hline Var4 (of type Double) & Custom variable \\
\hline
\end{tabular}

Methods
\begin{tabular}{|c|c|}
\hline \(\cdots\) ScaleIn (returns Void) & \begin{tabular}{l}
(Number of shares Int32) \\
Scale-in position
\end{tabular} \\
\hline \#ScaleIn (returns Void) & (Number of shares Int32, Trading order _TradingOrder) Scale-in position \\
\hline \# ScaleOut (returns Void) & \begin{tabular}{l}
(Number of shares Int32) \\
Scale-out position
\end{tabular} \\
\hline \#-ScaleOut (returns Void) & (Number of shares Int32, Trading order _TradingOrder) Scale-out position \\
\hline \(=\) ClosePosition (returns Void) & \begin{tabular}{l}
(parameterless) \\
Close the current position
\end{tabular} \\
\hline \({ }^{\text {ClosePasition (returns Void) }}\) & \begin{tabular}{l}
(Open market order _OpenMarketOrder) \\
Close the current position
\end{tabular} \\
\hline \({ }^{\text {che }}\) ClosePosition (returns Void) & \begin{tabular}{l}
(Close market order _CloseMarketOrder) \\
Close the current position
\end{tabular} \\
\hline \(=\) ClosePosition (returns Void) & \begin{tabular}{l}
(Limit order _LimitOrder) \\
Close the current position
\end{tabular} \\
\hline \#GetValueFromFormula (returns Double) & \begin{tabular}{l}
(parameterless) \\
Parse a vector-based formula and returns the vector value for the current date. Example: GetValueFromFormula('a = rsi(14);', 'a'); - \\
\(>\) to get the RSI value of the current symbol for the current date.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.13 TimeSeries}

QuantShare API Documentation

\section*{TimeSeries Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Count (of type Int32) & Get the time-series number of elements \\
\hline [Int32] (of type Double) & Get a time-series value \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetValue (returns Double) & (lag Int32) \\
Get a time-series value \\
\hline
\end{tabular}

\subsection*{1.4.1.6.14 VectorCustom}

QuantShare API Documentation

\section*{VectorCustom Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Count (of type Int32) & Get the number of elements \\
\hline [Int32] (of type CustomDatabaseValues) & Get the elements at the specified bar index \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetValue (returns CustomDatabaseValues) & (lag Int32) \\
& Get the elements at the specified bar index \\
\hline
\end{tabular}

\subsection*{1.4.1.6.15 CustomDatabaseValues}

QuantShare API Documentation

\section*{CustomDatabaseValues Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline [Int32] (of type Object) & Get the element at the specified index \\
\hline Length (of type Int32) & Get the number of elements for the current bar period \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetValue (returns Object) & (index Int32) \\
& Get the element at the specified index \\
\hline
\end{tabular}

\subsection*{1.4.1.6.16 MMData}

\section*{QuantShare API Documentation}

MMData Members
A class that is used to retrieve data

\section*{Parent}

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \#GetCustomDatabaseData (returns VectorCustom) & \begin{tabular}{l}
(database String, field String, symbol name String) \\
Get the specified database field data
\end{tabular} \\
\hline = PParseFormula (returns MMParser) & \begin{tabular}{l}
(formula. Ex: a = rsi(14); String) \\
Parse a vector-based formula
\end{tabular} \\
\hline \#MsMarketData (returns Boolean) & \begin{tabular}{l}
(Symbol name String) \\
Returns whether there is market data or not on the current date
\end{tabular} \\
\hline \(\because\) GetPriceSeries (returns TimeSeries) & \begin{tabular}{l}
(parameterless) \\
Returns a price series
\end{tabular} \\
\hline =MsSymbolExists (returns Boolean) & \begin{tabular}{l}
(symbol name String) \\
Returns TRUE if the specified symbol exists
\end{tabular} \\
\hline =GetSymbols (returns String[]) & \begin{tabular}{l}
(parameterless) \\
Get the strategy's symbols
\end{tabular} \\
\hline \#GetBuySignals (returns MMEntrySignals) & \begin{tabular}{l}
(parameterless) \\
Get buy signals generated at the end of this period
\end{tabular} \\
\hline =GetShortSignals (returns MMEntrySignals) & \begin{tabular}{l}
(parameterless) \\
Get short signals generated at the end of this period
\end{tabular} \\
\hline \#GetSellSignals (returns MMExitSignals) & \begin{tabular}{l}
(parameterless) \\
Get sell signals generated at the end of this period
\end{tabular} \\
\hline 二GetCoverSignals (returns MMExitSignals) & \begin{tabular}{l}
(parameterless) \\
Get cover signals generated at the end of this period
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.17 MMOrders}

QuantShare API Documentation

\section*{MMOrders Members}

A class that is used to generate orders
Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) OpenMarketOrder (returns_TradingOrder) & \begin{tabular}{l} 
(parameterless) \\
Create an market order that is executed at the open
\end{tabular} \\
\hline =OpenMarketOrder (returns_TradingOrder) & \begin{tabular}{l} 
(execute the order after the specified number of bars Int32, keep \\
the order active for the specified number of bars Int32) \\
Create an market order that is executed at the open
\end{tabular} \\
\hline \#CloseMarketOrder (returns_TradingOrder) & \begin{tabular}{l} 
(parameterless) \\
Create an market order that is executed at the close
\end{tabular} \\
\hline (execute the order after the specified number of bars Int32, keep \\
the order active for the specified number of bars Int32) \\
Create an market order that is executed at the close
\end{tabular}

\subsection*{1.4.1.6.18 MMOnStartSimulation}

QuantShare API Documentation

\section*{MMOnStartSimulation Members}

Functions related to the OnStartSimulation event
Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) SetTextInput (returns Void) & \begin{tabular}{l} 
(Variable name String, Default Value String, Description String) \\
Get a text value for the Money Management Input Form, use the \\
Variable Class to get the value
\end{tabular} \\
\hline SSetTextInput (returns Void) & \begin{tabular}{l} 
(Variable name String, Default Value String, Description String, \\
Set the possible values String[]) \\
Get a text value for the Money Management Input Form, use the \\
Variable Class to get the value
\end{tabular} \\
\hline SetNumericInput (returns Void) & \begin{tabular}{l} 
(Variable name String, Default Value Double, Description String) \\
Get a numeric value for the Money Management Input Form, use \\
the Variable Class to get the value
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.19 MMParser}

QuantShare API Documentation
MMParser Members
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline IsErrors (of type Boolean) & Returns whether an error occured while parsing the formula \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(\approx\) GetErrors (returns String) & \begin{tabular}{l} 
(parameterless) \\
Get the last execution errors
\end{tabular} \\
\hline\(\approx\) GetTimeSeries (returns TimeSeries) & \begin{tabular}{l} 
(symbol name String, variable within the formula String) \\
Retrieves a Time-Series.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.1.6.20 MMEntrySignals}

QuantShare API Documentation

\section*{MMEntrySignals Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Count (of type Int32) & Get the number of signals \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetSymbol (returns String) & (Signal index Int32) \\
Get the symbol name
\end{tabular}

\subsection*{1.4.1.6.21 MMExitSignals}

QuantShare API Documentation
MMExitSignals Members
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Count (of type Int32) & Get the number of signals \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetSymbol (returns String) & \begin{tabular}{l} 
(Signal index Int32) \\
Get the symbol name
\end{tabular} \\
\hline GGetPrice (returns Double) & (Signal index Int32) \\
Get the symbol sell/cover price \\
\hline
\end{tabular}

\subsection*{1.4.1.6.22 _TradingOrder}

QuantShare API Documentation

\section*{TradingOrder Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline PositionValidFor (of type Int32) & \begin{tabular}{l} 
Execute order after the number of bars specified in the OrderLag \\
variable
\end{tabular} \\
\hline Fof type Int32) & \begin{tabular}{l} 
For entry orders: The number of periods to keep the order alive (in \\
case the order isn't filled) For exit orders: The number of periods to \\
keep the order alive before transforming it to an open market order
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.2 Analyze Ranking System Metrics}

\section*{Analyze Ranking System Metrics Members}

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Buckets (of type RankingSystemPerformanceDetails) & Class containing information about the ranking system buckets \\
\hline Fitness (of type Double) & Fitness value \\
\hline
\end{tabular}

\subsection*{1.4.2.1 Analyze Ranking System Metrics}

QuantShare API Documentation

\section*{Analyze Ranking System Metrics Members}

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Buckets (of type RankingSystemPerformanceDetails) & Class containing information about the ranking system buckets \\
\hline Fitness (of type Double) & Fitness value \\
\hline
\end{tabular}

\subsection*{1.4.2.2 Members}

\subsection*{1.4.2.2.1 BucketDetails}

\section*{QuantShare API Documentation}

\section*{BucketDetails Members}

Parent

\section*{Properties}
\begin{tabular}{|c|c|}
\hline AnnualReturn (of type Double) & Annual return \\
\hline NbPositions (of type Int32) & Number of positions taken within this bucket \\
\hline Label (of type String) & Bucket label \\
\hline Score (of type Double) & Bucket score \\
\hline DetailsDate (of type BucketDetailsDate[]) & Bucket's positions details for rebalance dates. Each array element corresponds to a rebalance date. \\
\hline RebalancePeriod (of type Int32) & The ranking system rebalance period \\
\hline
\end{tabular}

\subsection*{1.4.2.2.2 BucketDetailsDate}

QuantShare API Documentation

\section*{BucketDetailsDate Members}

\section*{Parent}

\section*{Properties}
\begin{tabular}{|l|l|}
\hline AvgPerf (of type Double) & Average performance \\
\hline Equity (of type Double) & Average bars held \\
\hline NbPositions (of type Int32) & Number of positions \\
\hline Date (of type DateTime) & Rebalance date \\
\hline Score (of type Double) & Score value for the current bucket and the current rebalance date \\
\hline
\end{tabular}

\subsection*{1.4.2.2.3 RankingSystemPerformanceDetails}

QuantShare API Documentation

\section*{RankingSystemPerformanceDetails Members}

Class containing information about the ranking system buckets
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Buckets (of type BucketDetails[]) & \begin{tabular}{l} 
Array containing the buckets details, the first array element \\
contains the data of the first bucket...
\end{tabular} \\
\hline LastBucket (of type BucketDetails) & Last bucket details \\
\hline
\end{tabular}

\subsection*{1.4.3 Analyze Rules Metrics}

QuantShare API Documentation
Analyze Rules Metrics Members

\section*{Fields}
\begin{tabular}{|c|c|}
\hline Output (of type Double) & Average output per position \\
\hline OutputPerBar (of type Double) & Average output per position and per bar \\
\hline PercentPositive (of type Double) & Percent of positive positions \\
\hline BestPosition (of type Double) & Best position output \\
\hline WorstPosition (of type Double) & Worst position output \\
\hline AvgBarsHeld (of type Double) & Average bars held per position \\
\hline NbPositions (of type Double) & Number of positions \\
\hline StandardDeviation (of type Double) & Standard deviation of the position outputs \\
\hline Positions (of type SymbolPositionDetails) & Details of all positions \\
\hline Fitness (of type Double) & Fitness value \\
\hline Functions (of type RulesFunctions) & Function class that lets you add additional metrics \\
\hline
\end{tabular}

\subsection*{1.4.3.1 Analyze Rules Metrics}

QuantShare API Documentation

\section*{Analyze Rules Metrics Members}

\section*{Fields}
\begin{tabular}{|c|c|}
\hline Output (of type Double) & Average output per position \\
\hline OutputPerBar (of type Double) & Average output per position and per bar \\
\hline PercentPositive (of type Double) & Percent of positive positions \\
\hline BestPosition (of type Double) & Best position output \\
\hline WorstPosition (of type Double) & Worst position output \\
\hline AvgBarsHeld (of type Double) & Average bars held per position \\
\hline NbPositions (of type Double) & Number of positions \\
\hline StandardDeviation (of type Double) & Standard deviation of the position outputs \\
\hline Positions (of type SymbolPositionDetails) & Details of all positions \\
\hline Fitness (of type Double) & Fitness value \\
\hline Functions (of type RulesFunctions) & Function class that lets you add additional metrics \\
\hline
\end{tabular}

\subsection*{1.4.3.2 Members}

\subsection*{1.4.3.2.1 PositionDetails}

QuantShare API Documentation

\section*{PositionDetails Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Output (of type Double) & The position output \\
\hline DbBars (of type Int32) & The number of bars the current position was held \\
\hline Date (of type DateTime) & Position entry date \\
\hline
\end{tabular}

\subsection*{1.4.3.2.2 SymbolPositionDetails}

QuantShare API Documentation

\section*{SymbolPositionDetails Members}

Details of all positions
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline\(\square\) Symbol (of type String) & Symbol name \\
\hline Positions (of type PositionDetails[]) & Positions details for the current symbol \\
\hline
\end{tabular}

\subsection*{1.4.3.2.3 RulesFunctions}

QuantShare API Documentation

\section*{RulesFunctions Members}

Function class that lets you add additional metrics
Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) AddMetric (returns Void) & \begin{tabular}{l} 
(metric name String, metric value Double) \\
Add a new metric
\end{tabular} \\
\hline\(=\) GetOutputName (returns String) & \begin{tabular}{l} 
(parameterless) \\
Returns the output name
\end{tabular} \\
\hline\(=\) GetRuleFormula (returns String) & \begin{tabular}{l} 
(parameterless) \\
Returns the rule formula
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.4 Parser Post-Script}

\section*{Parser Post-Script Members}

Script that is executed after parsing the downloaded data.

\section*{Fields}
\begin{tabular}{|l|l} 
Data (of type PostScript) & Contains the data that was parsed
\end{tabular}

\subsection*{1.4.4.1 Downloader Post-Script}

QuantShare API Documentation

\section*{Parser Post-Script Members}

Script that is executed after parsing the downloaded data.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Data (of type PostScript) & Contains the data that was parsed \\
\hline
\end{tabular}

\subsection*{1.4.4.2 Members}

\subsection*{1.4.4.2.1 PostScript}

QuantShare API Documentation

\section*{PostScript Members}

Contains the data that was parsed
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Rows (of type PostScriptRow[]) & Get the content rows \\
\hline
\end{tabular}

\subsection*{1.4.4.2.2 PostScriptRow}

QuantShare API Documentation

\section*{PostScriptRow Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline IsIgnoreLine (of type Boolean) & Specify whether to ignore the current row or not \\
\hline Data (of type Object[]) & Get the elements of the current row \\
\hline
\end{tabular}

\subsection*{1.4.5 Parser Pre-Script}

\section*{Parser Pre-Script Members}

Script that is executed before parsing the downloaded data.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Content (of type PreScript) & Contains the content to parse \\
\hline
\end{tabular}

\subsection*{1.4.5.1 Downloader Pre-Script}

QuantShare API Documentation

\section*{Parser Pre-Script Members}

Script that is executed before parsing the downloaded data.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Content (of type PreScript) & Contains the content to parse \\
\hline
\end{tabular}

\subsection*{1.4.5.2 Members}

\subsection*{1.4.5.2.1 PreScript}

QuantShare API Documentation

\section*{PreScript Members}

Contains the content to parse
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Rows (of type PreScriptRow[]) & Get the content rows \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetURLORFileName (returns String) & \begin{tabular}{l} 
(parameterless) \\
Get the URL or the file path that was used to get the current \\
content
\end{tabular} \\
\hline\(=\) GetSymbolNameFromNameX (returns String) & \begin{tabular}{l} 
(0 for name1... Int32, symbol nameX String) \\
Get symbol name from name1, name2 or name3
\end{tabular} \\
\hline\(=\) (Elurns Void) & \begin{tabular}{l} 
(Elements to add String[]) \\
Add a new row
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.5.2.2 PreScriptRow}

QuantShare API Documentation

\section*{PreScriptRow Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline IsIgnoreLine (of type Boolean) & Specify whether to ignore the current line or not \\
\hline Data (of type String[]) & Get the elements of the current line \\
\hline
\end{tabular}

\subsection*{1.4.6 Downloader URL-Script}

\section*{Downloader URL-Script Members}

This script is used to generated custom URLs. These URLs will be used to download data.

\section*{Fields}

Functions (of type URLScriptFunctions)

\subsection*{1.4.6.1 Downloader URL-Script}

QuantShare API Documentation

\section*{Downloader URL-Script Members}

This script is used to generated custom URLs. These URLs will be used to download data.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Functions (of type URLScriptFunctions) & Contains a list of methods \\
\hline
\end{tabular}

\subsection*{1.4.6.2 Members}
1.4.6.2.1 Net

QuantShare API Documentation

\section*{Net Members}

Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) DownloadString (returns String) & (URL String) \\
\hline\(=\) Download content from the specified URL \\
\hline =GetLinksByAnchor (returns String[]) & \begin{tabular}{l} 
(html content String) \\
Get all links from the provided content
\end{tabular} \\
\hline (heturns String[]) & \begin{tabular}{l} 
Get links from the specified content that contains the provided \\
anchor text
\end{tabular} \\
\hline (parameterless) \\
\hline Get HTML elements by tag name \\
\hline
\end{tabular}

\subsection*{1.4.6.2.2 URLScriptFunctions}

\section*{QuantShare API Documentation}

\section*{URLScriptFunctions Members}

Contains a list of methods
Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Net (of type Net) & Functions to download, parse... HTML content \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\pm\) GetDefaultURL (returns String) & \begin{tabular}{l}
(parameterless) \\
Returns the default URL
\end{tabular} \\
\hline \#GetStartDate (returns DateTime) & \begin{tabular}{l}
(parameterless) \\
Get the start date
\end{tabular} \\
\hline \(\because\) GetEndDate (returns DateTime) & \begin{tabular}{l}
(parameterless) \\
Get the end date
\end{tabular} \\
\hline = CreateURLPath (returns URLPath) & \begin{tabular}{l}
(parameterless) \\
Create an URL Path class, the downloader must load all the URLs specified in this class in order to download your content
\end{tabular} \\
\hline = AddURL (returns Void) & \begin{tabular}{l}
(URL String, Message to display String) \\
Add an URL to the download list
\end{tabular} \\
\hline =AddURLPath (returns Void) & \begin{tabular}{l}
(URL Path URLPath) \\
Add an URL Path, the downloader must load all the specified URLs in order to download your content
\end{tabular} \\
\hline \#GetValues (returns String) & \begin{tabular}{l}
(Parameter name String) \\
Get an URL parameter value. Example: The current symbol
\end{tabular} \\
\hline \#SetValues (returns Void) & \begin{tabular}{l}
(Parameter name String, Parameter value String) \\
Set an URL parameter value. Example: The current symbol
\end{tabular} \\
\hline \#MetAllValues (returns String[]) & \begin{tabular}{l}
(Parameter name String) \\
Get all the URL parameter values. Example: All the selected symbols
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.6.2.3 HTMLElement}

QuantShare API Documentation

\section*{HTMLElement Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline TagName (of type String) & Get the tag name \\
\hline InnerText (of type String) & Get the inner text \\
\hline InnerHTML (of type String) & Get the inner html \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetAttribute (returns String) & \begin{tabular}{l} 
(attribute name String) \\
Get an attribute value
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.6.2.4 URLPath}

QuantShare API Documentation

\section*{URLPath Members}

Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) AddURL (returns Void) & \begin{tabular}{l} 
(URL String, Message to display String) \\
Add an URL to the current Path
\end{tabular} \\
\hline\(=\) AddURL (returns Void) & \begin{tabular}{l} 
(URL String, Message to display String, Referer URL String) \\
Add an URL to the current Path
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.7 Indicators}

\section*{Indicators Members}

Create an indicator using JScript.Net.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline result (of type VectorD) & You have to assign values to this array \\
\hline cFunctions (of type CFunctions) & Divers functions \\
\hline
\end{tabular}

\subsection*{1.4.7.1 Indicators}

QuantShare API Documentation

\section*{Indicators Members}

Create an indicator using JScript.Net.

\section*{Fields}
\begin{tabular}{|l|l|}
\hline result (of type VectorD) & You have to assign values to this array \\
\hline cFunctions (of type CFunctions) & Divers functions \\
\hline
\end{tabular}

\subsection*{1.4.7.2 Members}

\subsection*{1.4.7.2.1 CFunctions}

\section*{QuantShare API Documentation}

\section*{CFunctions Members}

\section*{Divers functions}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Close (of type VectorD) & Close price vector \\
\hline Date (of type VectorDate) & Date vector \\
\hline High (of type VectorD) & High price vector \\
\hline Low (of type VectorD) & Low price vector \\
\hline Oopen (of type VectorD) & Open price vector \\
\hline Volume (of type VectorD) & Volume price vector \\
\hline Symbol (of type String) & Symbol name \\
\hline Openint (of type VectorD) & Open Interest price vector \\
\hline
\end{tabular}

\section*{Methods}
\(\left.\begin{array}{|l|l|}\hline=\text { SetForwardAndBackwardBars (returns Void) } & \begin{array}{l}\text { (backward bars Int32, forward bars Int32) } \\
\text { Set the number of forward and backward bars used by this } \\
\text { function Theses values are used by the application to optimize the } \\
\text { parsing process Example: sma(close, 10), uses 10 backward bars } \\
\text { and 0 forward bars }\end{array} \\
\hline=\text { CreateNumericVector (returns VectorD) } & \text { (parameterless) } \\
\hline=\text { Returns an empty numeric vector }\end{array}\right\}\)\begin{tabular}{l} 
(parameterless) \\
\hline\(=\) Returns an empty text vector \\
\hline (database String, field String) \\
\hline For each symbol bar get the elements of the database field data \\
that occured during this bar interval
\end{tabular}
\begin{tabular}{|l|l|}
\hline\(=\) CompileFormula (returns QSFormula) & \begin{tabular}{l} 
(formula String) \\
Compile a formula
\end{tabular} \\
\hline\(=\) GetVectorDouble (returns VectorD) & \begin{tabular}{l} 
(variable name String) \\
Get a numeric vector from the current formula
\end{tabular} \\
\hline\(=\) GetVectorString (returns Vectors) & \begin{tabular}{l} 
(variable name String) \\
Get a text vector from the current formula
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.4.7.2.2 CustomDatabaseValues}

QuantShare API Documentation

\section*{CustomDatabaseValues Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline [Int32] (of type Object) & Get the element at the specified index \\
\hline Length (of type Int32) & Get the number of elements for the current bar period \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GGetValue (returns Object) & (index Int32) \\
& Get the element at the specified index \\
\hline
\end{tabular}

\subsection*{1.4.7.2.3 QSFormula}

QuantShare API Documentation

\section*{QSFormula Members}

Parent

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetVectorDouble (returns VectorD) & \begin{tabular}{l} 
(variable name String) \\
Get a double variable from the compiled formula
\end{tabular} \\
\hline\(=\) GetVectorString (returns VectorS) & (variable name String) \\
Get a string variable from the compiled formula \\
\hline
\end{tabular}

\subsection*{1.4.7.2.4 VectorCustom}

QuantShare API Documentation

\section*{VectorCustom Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline [Int32] (of type CustomDatabaseValues) & Get the elements at the specified bar index \\
\hline Length (of type Int32) & Get the vector length \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) GetValues (returns CustomDatabaseValues) & (index Int32) \\
& Get the elements at the specified bar index \\
\hline
\end{tabular}

\subsection*{1.4.7.2.5 VectorD}

QuantShare API Documentation

\section*{VectorD Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Length (of type Int32) & Get the vector length \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) SetValue (returns Void) & (index Int32, value Double) \\
\hline\(=\) Assign a value to an element of the vector \\
\hline\(=\) Assign (returns Void) & (index Int32) \\
\hline Get an element value from the vector \\
\hline & (value Double) \\
\hline
\end{tabular}

\subsection*{1.4.7.2.6 VectorDate}

QuantShare API Documentation

\section*{VectorDate Members}

Parent

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Length (of type Int32) & Get the vector length \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) SetValue (returns Void) & (index Int32, value DateTime) \\
\hline Assign a value to an element of the vector \\
\hline GetValue (returns DateTime) & (index Int32) \\
Get an element value from the vector \\
\hline
\end{tabular}

\subsection*{1.4.7.2.7 VectorS}

QuantShare API Documentation

\section*{VectorS Members}

\section*{Parent}

\section*{Properties}
\begin{tabular}{|l|l|}
\hline Length (of type Int32) & Get the vector length \\
\hline
\end{tabular}

\section*{Methods}
\begin{tabular}{|l|l|}
\hline\(=\) SetValue (returns Void) & \begin{tabular}{l} 
(index Int32, value String) \\
Assign a value to an element of the vector
\end{tabular} \\
\hline =Assign (returns Void) & \begin{tabular}{l} 
(index Int32) \\
Get an element value from the vector
\end{tabular} \\
\hline (value String) \\
\hline
\end{tabular}

\subsection*{1.4.8 Perdiction Model Metrics}

\section*{QuantShare API Documentation}

\section*{Perdiction Model Metrics Members}

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Cycle (of type Int32) & The current cycle number \\
\hline LetworkError (of type Double) & The network error \\
\hline ValidationErrors (of type PredictionErrors) & Metrics for the learning samples \\
\hline TestErrors (of type PredictionErrors) & Metrics for the validation samples \\
\hline Fitness (of type Double) & Metrics for the test samples \\
\hline
\end{tabular}

\subsection*{1.4.8.1 Perdiction Model Metrics}

QuantShare API Documentation

\section*{Perdiction Model Metrics Members}

\section*{Fields}
\begin{tabular}{|l|l|}
\hline Cycle (of type Int32) & The current cycle number \\
\hline LearningErrors (of type PredictionErrors) & The network error \\
\hline ValidationErrors (of type PredictionErrors) & Metrics for the learning samples \\
\hline TestErrors (of type PredictionErrors) & Metrics for the validation samples \\
\hline Fitness (of type Double) & Metrics for the test samples \\
\hline
\end{tabular}

\subsection*{1.4.8.2 Members}

\subsection*{1.4.8.2.1 PredictionErrors}

QuantShare API Documentation

\section*{PredictionErrors Members}

Metrics for the test samples
Parent

\section*{Properties}
\begin{tabular}{|c|c|}
\hline M MSE (of type Double) & Mean squared error \\
\hline POCD (of type Double) & Prediction of correct direction \\
\hline POCID (of type Double) & Prediction of change in direction \\
\hline UTHEIL (of type Double) & Theil's \(U\) statistic assesses predictive accuracy relative to a naive no-change model. It is unitary when the MSFE (mean absolute forecast error) equals the mean square error of naive no-change forecasts, and it is greater than 1.0 if predictions are less accurate than no-change forecasts. \\
\hline
\end{tabular}

\subsection*{1.4.9 Simulation Metrics}

QuantShare API Documentation

\section*{Simulation Metrics Members}

\section*{Fields}
\begin{tabular}{|c|c|}
\hline InitialCapital (of type Double) & Initial Capital \\
\hline EndCapital (of type Double) & End Capital \\
\hline NetProfit (of type Double) & Net Profit \\
\hline NetProfitInPercentage (of type Double) & Net Profit In Percentage \\
\hline - Exposure (of type Double) & Exposure \\
\hline NetRiskAdjustedReturn (of type Double) & Net Risk Adjusted Return \\
\hline AnnualReturn (of type Double) & Annual Return \\
\hline RiskAdjustedReturn (of type Double) & Risk Adjusted Return \\
\hline AverageProfitLoss (of type Double) & Average ProfitLoss \\
\hline AverageProfitLossInPercentage (of type Double) & Average ProfitLoss In Percentage \\
\hline AverageBarsHeld (of type Double) & Average Bars Held \\
\hline TotalProfit (of type Double) & Total Profit \\
\hline NumberOfWinners (of type Double) & Number Of Winners \\
\hline AverageProfit (of type Double) & Average Profit \\
\hline AverageProfitInPercentage (of type Double) & Average Profit In Percentage \\
\hline AverageBarsHeldForWinners (of type Double) & Average Bars Held For Winners \\
\hline - MaxConsecutiveWinner (of type Double) & Max Consecutive Winner \\
\hline LargestWinner (of type Double) & Largest Winner \\
\hline NumberOfBarsinLargestWinner (of type Double) & Number Of Bars In Largest Winner \\
\hline TotalLoss (of type Double) & Total Loss \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NumberOfLosers (of type Double) & Number Of Losers \\
\hline AverageLoss (of type Double) & Average Loss \\
\hline AverageLossInPercentage (of type Double) & Average Loss In Percentage \\
\hline AverageBarsHeldForLosers (of type Double) & Average Bars Held For Losers \\
\hline - MaxConsecutiveLoser (of type Double) & Max Consecutive Loser \\
\hline LargestLoser (of type Double) & Largest Loser \\
\hline NumberOfBarsInLargestLoser (of type Double) & Number Of Bars In Largest Loser \\
\hline - MaximumTradeDrawdown (of type Double) & Maximum Trade Drawdown \\
\hline MaximumTradeDrawdownInpercentage (of type Double) & Maximum Trade Drawdown In percentage \\
\hline MaximumSystemDrawdown (of type Double) & Maximum System Drawdown \\
\hline MaximumSystemDrawdownInpercentage (of type Double) & Maximum System Drawdown In percentage \\
\hline RecoveryFactor (of type Double) & Recovery Factor \\
\hline - CarMaxDD (of type Double) & Car MaxDD \\
\hline RarMaxDD (of type Double) & Rar MaxDD \\
\hline NumberOfTrades (of type Double) & Number Of Trades \\
\hline PercentOfWinners (of type Double) & Percent Of Winners \\
\hline AnnualTurnover (of type Double) & Annual Turnover \\
\hline TotalTradingCosts (of type Double) & Total Trading Costs \\
\hline VolumeActivity (of type Double) & Volume Activity \\
\hline PercentTradingCostOfVolume (of type Double) & Percent Trading Cost Of Volume \\
\hline PercentPositiveDays (of type Double) & Percent Positive Days \\
\hline PercentPositiveWeeks (of type Double) & Percent Positive Weeks \\
\hline PercentPositiveMonths (of type Double) & Percent Positive Months \\
\hline PercentPositiveYears (of type Double) & Percent Positive Years \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AverageDailyReturn (of type Double) & Average Daily Return \\
\hline AverageWeeklyReturn (of type Double) & Average Weekly Return \\
\hline AverageMonthlyReturn (of type Double) & Average Monthly Return \\
\hline UlcerIndex (of type Double) & Ulcer Index \\
\hline UlcerPerformanceIndex (of type Double) & Ulcer Performance Index \\
\hline KRatio (of type Double) & K Ratio \\
\hline StandardDeviation (of type Double) & Standard Deviation \\
\hline DownsideStandardDeviation (of type Double) & Downside Standard Deviation \\
\hline SharpeRatio (of type Double) & Sharpe Ratio \\
\hline SortinoRatio (of type Double) & Sortino Ratio \\
\hline ProfitFactor (of type Double) & Profit Factor \\
\hline PayoffRatio (of type Double) & Payoff Ratio \\
\hline Beta (of type Double) & Beta \\
\hline Alpha (of type Double) & Alpha \\
\hline RSquared (of type Double) & R Squared \\
\hline Correlation (of type Double) & Correlation \\
\hline Fitness (of type Double) & Fitness value \\
\hline
\end{tabular}

\subsection*{1.4.9.1 Simulation Metrics}

QuantShare API Documentation
Simulation Metrics Members

\section*{Fields}
\begin{tabular}{|c|c|}
\hline InitialCapital (of type Double) & Initial Capital \\
\hline EndCapital (of type Double) & End Capital \\
\hline NetProfit (of type Double) & Net Profit \\
\hline NetProfitinPercentage (of type Double) & Net Profit In Percentage \\
\hline Exposure (of type Double) & Exposure \\
\hline NetRiskAdjustedReturn (of type Double) & Net Risk Adjusted Return \\
\hline - AnnualReturn (of type Double) & Annual Return \\
\hline RiskAdjustedReturn (of type Double) & Risk Adjusted Return \\
\hline - AverageProfitLoss (of type Double) & Average ProfitLoss \\
\hline AverageProfitLossInPercentage (of type Double) & Average ProfitLoss In Percentage \\
\hline AverageBarsHeld (of type Double) & Average Bars Held \\
\hline TotalProfit (of type Double) & Total Profit \\
\hline NumberOfWinners (of type Double) & Number Of Winners \\
\hline AverageProfit (of type Double) & Average Profit \\
\hline AverageProfitInPercentage (of type Double) & Average Profit In Percentage \\
\hline AverageBarsHeldForWinners (of type Double) & Average Bars Held For Winners \\
\hline MaxConsecutiveWinner (of type Double) & Max Consecutive Winner \\
\hline LargestWinner (of type Double) & Largest Winner \\
\hline NumberOfBarsInLargestWinner (of type Double) & Number Of Bars In Largest Winner \\
\hline TotalLoss (of type Double) & Total Loss \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NumberOfLosers (of type Double) & Number Of Losers \\
\hline AverageLoss (of type Double) & Average Loss \\
\hline AverageLossInPercentage (of type Double) & Average Loss In Percentage \\
\hline AverageBarsHeldForLosers (of type Double) & Average Bars Held For Losers \\
\hline - MaxConsecutiveLoser (of type Double) & Max Consecutive Loser \\
\hline LargestLoser (of type Double) & Largest Loser \\
\hline NumberOfBarsInLargestLoser (of type Double) & Number Of Bars In Largest Loser \\
\hline - MaximumTradeDrawdown (of type Double) & Maximum Trade Drawdown \\
\hline MaximumTradeDrawdownInpercentage (of type Double) & Maximum Trade Drawdown In percentage \\
\hline MaximumSystemDrawdown (of type Double) & Maximum System Drawdown \\
\hline MaximumSystemDrawdownInpercentage (of type Double) & Maximum System Drawdown In percentage \\
\hline RecoveryFactor (of type Double) & Recovery Factor \\
\hline - CarMaxDD (of type Double) & Car MaxDD \\
\hline RarMaxDD (of type Double) & Rar MaxDD \\
\hline NumberOfTrades (of type Double) & Number Of Trades \\
\hline PercentOfWinners (of type Double) & Percent Of Winners \\
\hline AnnualTurnover (of type Double) & Annual Turnover \\
\hline TotalTradingCosts (of type Double) & Total Trading Costs \\
\hline VolumeActivity (of type Double) & Volume Activity \\
\hline PercentTradingCostOfVolume (of type Double) & Percent Trading Cost Of Volume \\
\hline PercentPositiveDays (of type Double) & Percent Positive Days \\
\hline PercentPositiveWeeks (of type Double) & Percent Positive Weeks \\
\hline PercentPositiveMonths (of type Double) & Percent Positive Months \\
\hline PercentPositiveYears (of type Double) & Percent Positive Years \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AverageDailyReturn (of type Double) & Average Daily Return \\
\hline AverageWeeklyReturn (of type Double) & Average Weekly Return \\
\hline AverageMonthlyReturn (of type Double) & Average Monthly Return \\
\hline UlcerIndex (of type Double) & Ulcer Index \\
\hline UlcerPerformanceIndex (of type Double) & Ulcer Performance Index \\
\hline KRatio (of type Double) & K Ratio \\
\hline StandardDeviation (of type Double) & Standard Deviation \\
\hline DownsideStandardDeviation (of type Double) & Downside Standard Deviation \\
\hline SharpeRatio (of type Double) & Sharpe Ratio \\
\hline SortinoRatio (of type Double) & Sortino Ratio \\
\hline ProfitFactor (of type Double) & Profit Factor \\
\hline PayoffRatio (of type Double) & Payoff Ratio \\
\hline Beta (of type Double) & Beta \\
\hline Alpha (of type Double) & Alpha \\
\hline RSquared (of type Double) & R Squared \\
\hline Correlation (of type Double) & Correlation \\
\hline Fitness (of type Double) & Fitness value \\
\hline
\end{tabular}```

